Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies

Giorgia Zadra1,2, Julie L. Batista3,4, and Massimo Loda1,2,5,6

Abstract

The precise role of 5′AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. Although it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a "conditional" tumor suppressor and "contextual" oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation, and provides an overview of the most relevant data available on AMPK activation and AMPK-activating drugs in human studies.

Introduction

5′AMP-activated kinase (AMPK) is a central metabolic sensor that stands at the crossroad between metabolic and signaling networks. In 2003, the discovery of the tumor suppressor liver kinase B1 (LKB1) as the major upstream kinase of AMPK established a link between an energy regulator and cancer pathogenesis, suggesting that the tumor suppressor functions of LKB1 could be mediated by AMPK (1–3). Since then, in vitro and in vivo studies have been conducted to dissect the role of AMPK in cancer initiation and progression, using AMPK-modulating drugs. The functional consequences of AMPK activation in cancer appear to be much more complex than initially thought, and AMPK can behave as both cancer "friend" or "foe" in a context-specific manner.

Drug-induced supraphysiological activation of AMPK reduces tumor growth in vitro and in preclinical models through the suppression of key biosynthetic pathways (reviewed in refs. 4, 5). However, physiological activation of AMPK in response to a broad range of stresses (e.g., hypoxia, glucose deprivation, and matrix detachment) provides cancer cells with the flexibility to adapt and survive metabolic stress (metabolic adaptation; reviewed in ref. 6). IHC evaluation of AMPK status in human tissues has revealed that the levels of AMPK activation are heterogeneous in different tumor types, while discordant data have been reported on the correlation between AMPK activation and tumor prognosis.

Here, we discuss the "two faces" of AMPK, the therapeutic benefit of AMPK modulators and we review the current data available on AMPK activation and AMPK-activating drugs in human studies. Throughout the review, we associate AMPK with both the terms "tumor promoter" and "tumor suppressor." However, we do not intend to define AMPK as a classic bona fide tumor suppressor gene such as LKB1, which is mutated or deleted in several cancers, rather to emphasize the fact that AMPK activation may result in tumor growth inhibition, cell-cycle arrest, and apoptosis of cancer cells in some tumor types/contexts. Interrogating the eBioPortal data, the frequency of mutation/deletion in the genes coding for AMPK catalytic subunits α1 (PRKAA1) and α2 (PRKAA2) ranges from 0.2% to 3.4% and from 0.2% to 10.3%, respectively (7).

AMPK: A Unique Metabolic "Guardian" with Pleiotropic Downstream Targets

AMPK is a heterotrimeric Ser/Thr kinase complex characterized by a catalytic α subunit and two regulatory subunits (β, γ), which exist in different isoforms, making up to 12 different heterotrimers. The different subunits show tissue specificity and may contribute to tumor cell growth and proliferation independently (10–8)). The γ subunit contains four-tandem sequence repeats known as CBS repeats, which functions as four adenine nucleotide-binding domains. Site 2 is always unoccupied, site 4 is permanently bound by AMP, whereas sites 1 and 3 can be competitively bound by either AMP, or ADP, or ATP (11, 12).

AMPK functions as an energy sensor to restore energy homeostasis at cell and organismal levels in conditions of metabolic stress that reduce ATP levels either by inhibiting its production (e.g., hypoxia, glucose deprivation, and treatment with biguanides drugs or xenobiotics) or by accelerating its consumption (e.g., muscle contraction), resulting in increased ADP and AMP levels. For a detailed description of AMPK regulation, we refer...
readers to other excellent reviews (13, 14). However, a brief description of the biochemical circuits regulating AMPK follows. The binding of ADP and/or AMP to the γ subunit both promotes phosphorylation by upstream kinases and inhibits dephosphorylation of the residue Thr172 within the activation loop of the catalytic domain, which is required for the full activity of the kinase. Furthermore, the binding of AMP (but not ADP) causes a further allosteric activation of the phosphorylated kinase. The two major upstream kinases responsible for AMPK activation are the tumor suppressor LKB1 and Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2). An activating role, still not well characterized, for the transforming growth factor β-activated kinase 1 (TAK1) has also been described. LKB1 activates AMPK during energy stress, whereas CaMKK2 activity is induced by increased intracellular Ca2+ levels, regardless of the energy status of the cells (reviewed in ref. 13). However, CaMKK2 can compensate for the absence of LKB1 in mediating AMPK phosphorylation (15). In addition to AMP, ADP, and Ca2+, recent studies have also identified reactive oxygen species (ROS) as additional upstream activators of AMPK, acting in an LKB1-independent manner (Fig. 1; ref. 16). Once activated, AMPK maintains energy balance by switching off anabolic pathways that consume ATP and NADPH, while switching on catabolic pathways that generate ATP both by direct phosphorylation of metabolic enzymes, and through longer-term effects mediated by phosphorylation of transcription factors and coactivators (14). Thus, AMPK can restrain cell growth by (i) inhibiting protein synthesis [through direct phosphorylation of mammalian target of rapamycin complex 2 (mTORC2) and Raptor], (ii) blocking fatty acid (FA) and cholesterol biosynthesis [through direct phosphorylation of the enzymes acetyl-CoA carboxylase 1 (ACC1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and inhibition of the lipogenic transcription factors sterol regulatory element-binding proteins (SREBP) and carbohydrate-responsive element-binding protein (ChREBP)], required for new membrane formation in proliferating cells, (iii) inducing cell-cycle arrest and apoptosis [through several mechanisms, including stabilization of p53, regulation of the cyclin-dependent kinase inhibitors p21Waf1 and p27Cip1, phosphorylation of the hippo signaling member angiomotin-like 1 (AMOTL1), an upstream inhibitor of Yes-associated protein (YAP); refs. 13, 17, 18], while promoting cell survival mechanisms during metabolic stress (19), as discussed below (Fig. 2).

Role of AMPK in Cancer: Preclinical Studies

AMPK as a tumor suppressor

Because the role of LKB1 as tumor suppressor was well established, AMPK was primarily considered as a component of the LKB1-mediated tumor suppressor cascade and much less was known regarding its own independent role in cancer. This was due to the fact that most of the data were generated utilizing the AMPK activators AICAR and metformin, which also display AMPK-independent mechanisms or by experimental evidence in models of LKB1 inactivation, which affect an additional 12 AMPK-related downstream kinases, beyond AMPK. The role of the AMPK-related kinases is still not very well characterized, although they might themselves contribute to the tumor suppressive functions of LKB1, as well as have independent functions (20). Experiments of genetic ablation of AMPK, the use of direct...
AMPK activators, and detailed phosphorylation studies in different cancer models have recently helped to address this issue. Faubert and colleagues have reported that the ubiquitous knock-out (KO) of AMPKα1, the only catalytic subunit expressed in B cells, accelerates the development of lymphomas in transgenic mice overexpressing c-Myc, suggesting that AMPK loss can cooperate with oncogenic drivers to promote tumorigenesis in a tissue-specific manner. The underlying mechanism for AMPK tumor suppressor activity is the ability of the kinase to exert an “anti-Warburg” effect by downregulating hypoxia-inducible factor 1-alpha (HIF1α) and its downstream glycolytic genes, which, conversely, are upregulated in AMPKα1 KO mice (21).

Aside from antagonizing the Warburg effect, AMPK has also been shown to exert its “metabolic” tumor-suppressor role by inhibiting unchecked mTORC1 activity and de novo lipogenesis, required both during G1–S and G2–M phases. We have recently observed increased de novo FA synthesis concomitant to reduced AMPK activation and phosphorylation of its major target ACC1 (the rate-limiting enzyme for FA synthesis) (22). Cell-cycle arrest (via decreased fraction of cells in the S phase) and/or apoptosis was previously confirmed using ACC1 and fatty acid synthase (FASN) siRNA to directly inhibit FA synthesis (23, 24).

AMPK also plays a direct metabolic-independent role in cell-cycle regulation (25–27). A fine-tuned biphase activation of AMPK has been shown to be required for proper mitotic progression (28). However, alteration of the dynamic spatial and temporal regulation of AMPK by either its sustained activation or depletion can result in microtubule misalignment, spindle misorientation, abnormal chromosome segregation followed by mitotic catastrophe and polyploidy (e.g., observed under metformin treatment) or mitotic delay (e.g., observed in AMPK-silenced cells; refs. 27, 29). Thus, cell-cycle arrest induced by persistent supraphysiological activation of AMPK could be ascribed to both the inhibition of de novo FA synthesis (metabolic role) as well as mitotic spindle assembly/chromosome segregation abnormalities (nonmetabolic role). Recently, a role for the subunit AMPKα2 in the direct regulation of cell cycle, independently of energy balance, has also emerged (30).

A third mechanism in favor of AMPK’s behavior as a “tumor suppressor” has been described by Shen and colleagues, showing AMPK-independent phosphorylation of the oncogene BRAF at Ser729. This phosphorylation prevents BRAF interaction with the scaffolding protein kinase suppressor of Ras 1 (KSR1), leading to the suppression of the oncogenic MEK–ERK signaling and consequent impairment of cell proliferation and cell-cycle progression (31).

Furthermore, additional mechanisms of action to suppress tumor growth have been proposed. Chou and colleagues showed that AMPK knockout promotes epithelial-to-mesenchymal transition (EMT) in breast and prostate cancer cell lines by reducing the expression of forkhead box O3 (Foxo3a) and E-cadherin in conjunction with increased expression of vimentin, Y-box-binding protein-1 (YB-1), Snail, and the formation of F-actin stress fibers (32). These results suggested that AMPK activation counteracts EMT, the process through which epithelial cells are thought to acquire cancer stem cell–like properties and gain the ability to breach basement membranes and metastasize to distant sites. DeRan and colleagues showed that AMPK activation induces phosphorylation of the hippo signaling component AMOTL1, which results in the cytoplasmic sequestration and inhibition of YAP and its targeted genes, involved in proliferation and survival. This mechanism was abolished when AMPK expression was silenced, suggesting that loss of AMPK activity may contribute to tumorigenesis through AMOTL1 destabilization, leading to hyperactivation of YAP (18). Finally, AMPK may be inactivated by its ubiquitination and degradation by the cancer-specific MAGE-A3/6-TRIM28 ubiquitin ligase. MAGE-A3 and MAGE-A6 proteins, normally expressed only in the male germline, are frequently reactivated in human cancers, they are necessary for cancer cell viability, and sufficient to induce cell transformation. Screening for targets of the MAGE-A3/6–TRIM28 complex revealed that it ubiquitinates and degrades AMOTL1, leading to inhibition of autophagy, activation of mTORC1 signaling, and hypersensitization to AMPK agonists, such as metformin. These findings elucidated a germline mechanism commonly hijacked in cancer to suppress AMPK (33).

Further evidence also supports the tumor suppressor role of AMPK in some tumor types and genetic contexts. First, protein kinase B (Akt) has been reported to induce AMPK phosphorylation at Ser485, reducing its activation by LKB1 (34). This might occur in tumors in which Akt is hyperactivated due to phosphatase and tensin homolog (PTEN) loss-of-function mutations, or activating mutations in phosphoinositide-3-kinase (PI3K). Second, AMPK activation is suppressed in melanoma cells carrying the most common BRAF mutation V600E, which induces a constitutively active downstream ERK. The lack of AMPK activity is due to ERK and ribosomal S6 kinase (RSK)-mediated phosphorylation of LKB1, which prevents its binding/activation of AMPK. These data suggested that suppression of the LKB1/AMPK pathway might play an important role in BRAFV600E-driven tumorigenesis (35). Third, inhibition of AMPK has been observed in a PTEN-deficient model of thyroid cancer and in non–small cell lung cancer (NSCLC) cells expressing the mitochondrial heat-shock protein 90 chaperone TRAP-1 (36). Fourth, in fumarate hydratase-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), which are characterized by a metabolic shift to aerobic glycolysis, AMPK levels are decreased. AMPK reduction leads to diminished expression of the DMT1 iron transporter, cytosolic iron deficiency, and activation of the iron regulatory proteins IRP1 and IRP2, resulting in increased expression of HIF1α. Silencing of HIF1α or activation of AMPK diminishes invasive activities of the HLRCC cell line UOK262, indicating that overexpression of HIF1α and downregulation of AMPK contribute to the oncogenic growth of fumarate hydratase-deficient cells (37). Recently, a study from Rodriguez and colleagues showed that cytochrome P450-1A1, constitutively expressed in the majority of breast cancer tumors, promotes breast cancer proliferation and survival, at least in part, through suppression of AMPK signaling (38). Finally, reduced expression of the catalytic α2 subunit has been reported in some cases of hepatocellular carcinomas, and it is associated with enhanced tumor cell growth in mouse xenografts (10).

Taken together, these results suggest that in specific genetic, metabolic, and signaling contexts, AMPK can exert a tumor suppressor role (Fig. 3).
AMPK as contextual tumor promoter

The ability to survive in conditions of metabolic stress, such as hypoxia/nutrient deprivation, or matrix detachment is fundamental to cancer cells. Several mechanisms by which the AMPK pathway supports this plasticity have been described. These include: (i) the induction of autophagy by AMPK-dependent phosphorylation of the unc-51-like kinases (ULK; ref. 39), (ii) the promotion of FA oxidation (FAO) to generate ATP (40, 41), (iii) transcriptional changes induced by phosphorylation of the core histone H2B (42), and (iv) the increase of intracellular NADPH levels through the activation of FAO/inhibition of FA synthesis to neutralize cytotoxic ROS. The AMPK energy-sensing pathway and the PI3K/Akt cascade converge on mTOR with opposing regulatory effects, under glucose depletion, both AMPK and Akt are activated and coordinately support cell survival (44). Thus, whereas the LKB1/AMPK pathway can act as a tumor suppressor through its ability to restrain tumor growth, it can also behave as “tumor promoter,” allowing tumor cells to be more resistant to metabolic stress, such as when tumor growth exceeds the capacity of its blood supply to deliver oxygen and nutrients (Fig. 4). Recent experimental evidence in vitro, using the direct AMPK activator A-769662, indeed supports this notion (45). AMPK activation can also promote tumor growth in specific tumor types and genetic contexts, even in nutrient-replete conditions.

Recent evidence showed the key role of AMPK in supporting tumor growth in aggressive breast and astrocytic tumors (46–49). Moreover, in contrast to the results obtained by Faubert and colleagues in a lymphoma model (21), MYC has been shown to establish a dependence on AMPK-related kinase 5 (ARK5) to maintain metabolic homeostasis and cell survival. Depletion of ARK5 prolongs survival in MYC-driven mouse models of hepatocellular carcinoma, suggesting that targeting cellular energy homeostasis is a valid therapeutic strategy to eliminate tumor cells that express deregulated MYC (50).

The therapeutic benefit of AMPK modulators: the metformin paradox

The better understanding of the dichotomous role of AMPK in cancer has also brought about the careful reevaluation of the use of AMPK modulators in cancer therapy. In this regard, the case of metformin is emblematic. The interest in using AMPK activators began as evidence was accumulating for the antitumorigenic role of the LKB1/AMPK axis. The antiproliferative and growth-suppressing effects of supraphysiological activation of AMPK have been shown in vitro and in preclinical models. Activation was achieved with natural compounds, the AMP mimetic drug AICAR as well as the biguanides metformin and phenformin, which inhibit complex I of the mitochondrial electron transport chain, leading to increased

Table

Main mechanisms through which AMPK can exert its double-faced role in cancer.

<table>
<thead>
<tr>
<th>AMPK Subcellular Localization</th>
<th>AMPK Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>Anabolism</td>
</tr>
<tr>
<td>Mitochondrial</td>
<td>Anaplerosis</td>
</tr>
<tr>
<td>Endoplasmic</td>
<td>Glycolysis</td>
</tr>
</tbody>
</table>

Figure 3.

Main mechanisms through which AMPK can exert its double-faced role in cancer. AMPK activation triggers cellular processes that can both suppress and promote tumor development/progression by activating different downstream pathways in a context-specific manner. NADPH, reduced form of nicotinamide adenine dinucleotide phosphate.

Figure 4.

AMPK functions as “conditional” tumor suppressor and “contextual” tumor promoter. The outcome of AMPK activation in cancer is affected by the genetic context, metabolic dependency of cancer cells, and the surrounding microenvironment. Differences in the intensity/duration of AMPK activation (e.g., physiological activation vs. drug-induced supraphysiological activation) as well as in the expression/activation of specific subunits of the heterotrimer contribute to the antitumorigenic vs. protumorigenic role of AMPK in different cancer types.
levels of intracellular ADP, AMP, and energy stress (reviewed in refs. 4, 14, 51). Metformin has received particular attention, because it is a safe medication, used as first choice in the treatment of type II diabetes, and has been associated with reduced cancer incidence in diabetic patients (52). Thus, it is currently being tested for cancer treatment/prevention in several clinical trials, as discussed below. However, ascribing metformin’s antitumor properties in vivo to AMPK activation has been criticized because the major effect of the drug is the inhibition of hepatic gluconeogenesis, resulting in reduced circulating levels of glucose and insulin, two well-known promoters of tumor cell proliferation. This is also valid for metformin’s antitumor effects in vitro, where several AMPK-independent mechanisms have been described (45, 53–56). Moreover, the discovery of the so-called “biguanide paradox” has recently suggested that, in specific contexts, metformin-mediated suppression of tumor growth does not depend on AMPK activation but, rather, on its downregulation. Because cells with a defective LKB1/AMPK pathway are less able to restore ATP levels in response to metabolic stress induced by metformin treatment, LKB1/AMPK-deficient cancer cells are more susceptible to cell death than their counterparts with a functional LKB1/AMPK axis (Fig. 5). Several in vitro and in vivo studies using metformin, phenformin, or other compounds that cause metabolic stress (AICAR, salicylate, and 2-deoxyglucose) have supported this mechanism (discussed in ref. 57, 58). In light of this, the use of biguanides may be most effective in combination with agents that inhibit, rather than activate, AMPK and, overall, these data suggest that the use of AMPK inhibitors rather than activators would preferentially trigger cancer cell death in the context of metabolic stress. Interestingly, the chemotherapeutic agent sunitinib has been shown to inhibit AMPK, suggesting that combinatorial treatment of sunitinib and metformin could be clinically relevant (59).

Novel direct AMPK activators have been developed to overcome the off-target effects of metformin and AICAR treatment. The direct activator A-769662 (which binds the β1 subunit) delays tumor formation in PTEN-null/LKB1 hypomorphic mice (60). The same compound has been shown to suppress the proliferation of breast, colon, and prostate cancer cells (61–63). A-769662 was, however, ineffective in models of glioma (56). OSI-53, a direct activator that binds the autoinhibitory domain of AMPK, displays tumor growth inhibition in vitro and in vivo in triple-negative breast cancer models (64). The same group reported that AMPK activation by OSI-53 blocks “EMT” in breast and prostate cancer cells by activating Foxo3a, which results in the inhibition of invasive phenotypes in vitro and metastatic properties in vivo (32). Direct supraphysiological activation of AMPK in nutrient-replete conditions has also been shown to suppress prostate cancer cell growth, in association with mitotic arrest and apoptosis, and to potentiate the effect of antiandrogens in vivo (65). The inhibitory effect of AMPK activation on the androgen receptor (AR) axis at both transcriptional and posttranslational levels was previously observed when a supraphysiological activation of AMPK was achieved by treatment with metformin or AICAR (66, 67). Finally, Compound 1, a novel AMPK activator, induces a significant antitumor activity in vitro and tumor growth delay in a mouse xenograft model of colorectal cancer (68). The mechanism through which Compound 1 activates AMPK is, however, still uncharacterized.

Taken together, the induction of a persistent, supraphysiological activation of AMPK results in tumor suppression in some cancer types (Fig. 3).

Salicylate, the active metabolite of aspirin following absorption from the gut, was recently identified as a direct AMPK activator, which binds to the same site on the β1 subunit as A-769662 (69). This suggests that AMPK activation might be involved in mediating aspirin’s protective effects against cancer. Future preclinical studies in genetically engineered AMPK models are however required to validate this hypothesis.
Moreover, ACC phosphorylation in tissues such as liver has also interruption of the blood supply, resulting in AMPK activation. freeze clamping, ACC phosphorylation occurred as a postmortem removed by dissection at ambient temperature rather than by AMPK activation in human cancers

AMPK Role in Cancer: Human Studies

AMPK activation in human cancers

Evaluation of AMPK activation in human tissues is not trivial. Early studies have demonstrated that when tissues and organs are removed by dissection at ambient temperature rather than by freeze clamping, ACC phosphorylation occurred as a postmortem removed by dissection at ambient temperature rather than by

ACC phosphorylation in human tissues should be interpreted with caution. AMPK activation has been investigated in fresh frozen and archival tumor tissue from numerous cancer sites, including prostate (63, 71, 72), breast (73, 74), head and neck (75), colorectal (76, 77), gastric (78, 79), liver (80), lung (81–83), ovary (84), and kidney (85, 86). Table 1 summarizes the population-based studies of AMPK activation, measured by protein expression of phosphorylated AMPKα1 (p-AMPKα1, n = 16 studies) or its phosphorylated substrate ACC (p-ACC, n = 6 studies), with cancer prognosis and clinicopathologic features. Of the 13 studies reporting on p-AMPKα1 at Thr172 and overall cancer-specific, or progression-free survival (PFS), 8 studies found that AMPK activation was associated with improved prognosis among head and neck (75), colorectal (76, 77), gastric (79), liver (80), lung (81), and kidney (85, 86) cancer patients either within the entire study population or within subgroups. Consistent with the findings for p-AMPKα1 at Thr172, one additional study of lung cancer found that higher expression of p-AMPKα1 at Ser485, which inhibits AMPK signaling (14), was associated with shorter survival (82). Conversely, two studies in gastric cancer (78) and in prostate cancer (72) reported associations between higher p-AMPKα1 and disease recurrence; however, the gastric cancer study population was substantially smaller than that of Kim and colleagues (79). Three additional studies in lung (83) and breast cancer patients (73, 74) found no association between p-AMPKα1 expression and overall survival (OS). In cross-sectional analyses, higher p-AMPKα1 expression was associated with lower tumor grade and/or stage in breast (73), head and neck (75), colorectal (76), gastric (79), liver (80), and ovarian (84) cancer, while 4 additional studies in prostate (72), breast (74), gastric (78), and lung (81) cancer found no associations with clinicopathologic features. In contrast, Chaudhury and colleagues found increasing expression of p-AMPKα1 with higher tumor grade in prostate cancer specimens (63). Overall, these human studies support the hypothesis that AMPK activation may delay disease progression in several cancer types.

Of the 6 studies that used protein expression of p-ACC at Ser79 to characterize AMPK activation, higher p-ACC was associated with worse OS (82) and disease recurrence (83) among lung cancer patients, and with worse OS among head and neck cancer (75) and kidney cancer (86) patients. In contrast, higher p-ACC was associated with improved OS and PFS in colorectal patients (77). Lastly, no correlation was observed between p-ACC expression and Gleason grade in prostate tumors (71). A better understanding of the effects of ACC inactivation and its downstream targets in different tumor tissues will help elucidate the complex role of AMPK activation in carcinogenesis.

Tumor expression of specific AMPK α, β, and γ subunits in relation to cancer outcomes has been explored in patients with melanoma (87), kidney cancer (85, 86), breast cancer (74), cervical cancer (88), lymphoma (89), ovarian cancer (84, 90, 91), lung cancer (82), and colorectal cancer (92). Total AMPKα1 protein expression, which captures both phosphorylated and nonphosphorylated AMPKα1, was associated with improved overall and disease-specific survival among 128 melanoma patients (87). Total AMPKα1/e2 protein expression was associated with improved PFS (P = 0.04) and borderline associated with OS (P = 0.06) in 37 renal cell carcinoma patients (85). Using publicly available data from The Cancer Genome Atlas (TCGA), overexpression of the genes encoding for AMPKα1, α2, β1, β2, and γ1 subunits was also associated with improved OS (P ≤ 0.05) in 417 clear-cell renal cell carcinoma patients (86). In a discovery (n = 166) and validation (n = 609) cohort of breast cancer patients, total AMPKα1 protein expression was associated with longer relapse-free (P = 0.016 and P = 0.06, respectively) and breast cancer-specific (P < 0.001 and P = 0.005, respectively) survival (74). Using fluorescence in situ hybridization, amplification of the gene encoding AMPKα1 was not significantly associated with n- or p-positivity (P = 0.085) in pretreatment cervical biopsies among 31 cervical cancer patients (88). Using the Oncomine database, Hoffman and colleagues reported an association between higher expression of the genes encoding the regulatory AMPKβ1 and β2 subunits and increased 5-year survival (P = 0.001 and 0.021, respectively) among diffuse large B-cell lymphoma patients; marginal associations were found for higher expression of the gene encoding AMPKα1 and improved survival (P = 0.0751), and higher expression of the gene encoding AMPKγ3 and worse survival (P = 0.0646; ref. 89). Similarly, in a series of 70 ovarian cancer patients, higher protein expression of p-AMPKα1 at Ser182 was associated with lower tumor grade (n = 70, P = 0.009) and improved OS in the subgroup of patients with serous subtype (n = 46, P = 0.037) and advanced-stage disease (n = 54, P = 0.0016; ref. 90). Phosphorylation of AMPKα1 at Ser182 has not been shown to affect the kinase activity, but is associated with nuclear localization (93). Another study of total AMPKβ1 in ovarian cancer also found that higher protein expression was associated with early tumor stage (P = 0.008), lower tumor grade (P = 0.013), and absence of metastasis (P = 0.008; ref. 84). This same research group previously demonstrated that higher expression of the gene encoding AMPKα2, measured by quantitative PCR, was associated with improved overall (P = 0.030) and disease-free (P = 0.014) survival in a hospital-based series of 76 ovarian cancer patients, although gene expression of the α1, β1, β2, γ1, and γ2 subunits was not associated with outcomes (91). Zupa and colleagues, in addition to the findings for p-AMPKα1 and p-ACC listed in Table 1, reported an association between higher protein expression of p-AMPKα1 at Ser108, indicative of AMPK activation (93), and short-term versus long-term survival (P = 0.0286) among 28 pathologic stage N0 NSCLC patients (82). Lastly, Vetvik and colleagues found that tumor expression of the gene encoding AMPKβ1 was positively
Table 1. Population-based studies of AMPK activation in tumor tissue, clinicopathologic features, and prognosis

<table>
<thead>
<tr>
<th>Author, year (ref.)</th>
<th>Cancer site</th>
<th>Country</th>
<th>Population</th>
<th>Age range, y</th>
<th>Time period of diagnosis</th>
<th>Cases, n</th>
<th>Median follow-up, y</th>
<th>Antibody used for AMPK activation method</th>
<th>Overall, cancer-specific, and PFS</th>
<th>Main findings*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park, 2009 (71)</td>
<td>Prostate</td>
<td>USA</td>
<td>Patients with paraffin-embedded arrayed prostate cancer specimens</td>
<td>NS</td>
<td>NS 244 NA</td>
<td></td>
<td></td>
<td>p-ACC (Ser79; Cell Signaling Technology); IHC</td>
<td>Higher p-AMPK associated with improved OS (P = 0.011)</td>
<td>No association of p-ACC with Gleason score or disease stage at time of surgery</td>
</tr>
<tr>
<td>Tennakoon, 2013 (72)</td>
<td>Prostate</td>
<td>USA</td>
<td>Patients with archival tissue collected from radical prostatectomy</td>
<td>NS</td>
<td>NS 61 NS</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Santa Cruz Biotechnology); IHC</td>
<td>Higher p-AMPK associated with biochemical recurrence (P = 0.017)</td>
<td>No association of p-AMPK with higher Gleason score (P = 0.023) and lower positive axillary nodes (P = 0.021 and 0.017) for cohorts 1 and 2, respectively.</td>
</tr>
<tr>
<td>Choudhury, 2014 (63)</td>
<td>Prostate</td>
<td>UK</td>
<td>Patients with paraffin-embedded arrayed prostate cancer specimens</td>
<td>NS</td>
<td>NS 213 NA</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172); IHC</td>
<td>No association of p-AMPK with tumor stage or lymph node status (data not shown)</td>
<td>Higher p-AMPK associated with high Gleason score (P = 0.025) and lower histological grade (P = 0.001 and 0.010 for cohorts 1 and 2, respectively).</td>
</tr>
<tr>
<td>Radad, 2013 (73)</td>
<td>Breast</td>
<td>Scotland</td>
<td>Patients enrolled in the Adjuvant Breast Cancer (ABC) clinical trial</td>
<td>34–76</td>
<td>1992–2000 117 6.1</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Cell Signaling Technology); IHC</td>
<td>No association of p-AMPK with OS (data not shown).</td>
<td>Higher p-AMPK associated with worse OS in univariate (P = 0.0007).</td>
</tr>
<tr>
<td>Zheng, 2014 (74)</td>
<td>Breast</td>
<td>UK</td>
<td>Both comprised of stage I–III invasive breast cancers from patients treated by wide local excision and radiotherapy</td>
<td>31–70</td>
<td>1986–1998 609 11.2</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Cell Signaling Technology); IHC</td>
<td>Higher p-AMPK associated with lower T stage (P = 0.0015). No association of p-AMPK with tumor differentiation (P = 0.0006).</td>
<td>Higher p-AMPK associated with worse relapse-free survival among P-MAPK3/1 positive (P = 0.0007), but not P-MAPK3/1-negative (P = 0.05).</td>
</tr>
<tr>
<td>Su, 2014 (75)</td>
<td>Head and neck</td>
<td>Taiwan</td>
<td>Patients with surgically resected squamous cell carcinoma of the head and neck</td>
<td>30–89</td>
<td>1998–2010 118 up to 2012</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Cell Signaling Technology); IHC</td>
<td>Higher p-AMPK associated with worse OS in univariate (P = 0.018) and multivariate (P = 0.0188), analyses.</td>
<td>Higher p-AMPK associated with lower OS (P = 0.0001), No association of p-AMPK with tumor stage (P = 0.036).</td>
</tr>
<tr>
<td>Baba, 2010 (76)</td>
<td>Colorectal</td>
<td>USA</td>
<td>Incident cases in Nurses' Health Study and Health Professionals' Follow-up Study</td>
<td>≤59 (20%); ≥60 (62%); ≥70 (38%)</td>
<td>1976–2004 718 10.8</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Cell Signaling Technology); IHC</td>
<td>No association of p-AMPK with cancer-specific survival among P-MAPK3/1-positive (P = 0.0006), but not P-MAPK3/1-negative (P = 0.05), patients.</td>
<td>Higher p-AMPK associated with lower tumor grade (P = 0.00009). No association of p-AMPK with tumor stage (P = 0.01).</td>
</tr>
<tr>
<td>Zuilisto, 2014 (77)</td>
<td>Colorectal</td>
<td>Italy</td>
<td>Patients with metastatic colorectal cancer treated with FOLFIRI-bevacizumab</td>
<td>28–74</td>
<td>2007–2011 48 2.0</td>
<td></td>
<td></td>
<td>p-AMPKx (Thr172; Cell Signaling Technology); IHC</td>
<td>Higher p-AMPK associated with improved OS (P = 0.0002) and multivariate (P = 0.031). No association with PFS (P = 0.231).</td>
<td>Higher p-AMPK associated with worse OS in univariate (P = 0.00021), but not multivariate (P = 0.018).</td>
</tr>
<tr>
<td>Kang, 2012 (78)</td>
<td>Gastric</td>
<td>South Korea</td>
<td>Patients receiving a combination regimen of cisplatin and S-1</td>
<td>22–71</td>
<td>2006–2010 73 2.2</td>
<td></td>
<td></td>
<td>p-AMPKx (Cell Signaling Technology); IHC</td>
<td>Higher p-AMPK associated with worse relapse-free survival (P = 0.022). No association with OS (P = 0.102).</td>
<td>No association of p-AMPK with OS (P = 0.0603).</td>
</tr>
</tbody>
</table>

(Continued on the following page)
Table 1. Population-based studies of AMPK activation in tumor tissue, clinicopathologic features, and prognosis (Cont’d)

<table>
<thead>
<tr>
<th>Author, year (ref.)</th>
<th>Cancer site</th>
<th>Country</th>
<th>Population</th>
<th>Age range, y</th>
<th>Time period of diagnosis</th>
<th>Cases, n</th>
<th>Median follow-up, y</th>
<th>Antibody used for AMPK activation; method</th>
<th>Overall, cancer-specific, and PFS</th>
<th>Main findings*</th>
<th>Other clinicopathologic features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, 2013 (79)</td>
<td>Gastric</td>
<td>South Korea</td>
<td>Patients who underwent surgical gastrectomy</td>
<td>24–85</td>
<td>2003–2006</td>
<td>621</td>
<td>Up to 10 years</td>
<td>p-AMPKα (Thr172); Cell Signaling Technology; IHC</td>
<td>Higher p-AMPK associated with improved OS (P = 0.024) and disease-free survival (P = 0.030).</td>
<td>Higher p-AMPK associated with lower tumor stage (P = 0.000).</td>
<td>Higher p-AMPK associated with absence of lymph node metastasis (P = 0.000).</td>
</tr>
<tr>
<td>Zheng, 2013 (80)</td>
<td>Liver</td>
<td>China</td>
<td>Patients who underwent radical resection</td>
<td><50 (56%); ≥50 (44%)</td>
<td>2005–2009</td>
<td>275</td>
<td>2.7</td>
<td>p-AMPKα (Thr172) Cell Signaling Technology; IHC</td>
<td>Higher p-AMPK associated with improved OS (P = 0.00029) and longer time to recurrence (P = 0.00071).</td>
<td>Higher p-AMPK associated with lower pathologic tumor stage (0.00014) and lower Edmondson grade (0.00324).</td>
<td>Higher p-AMPK associated with complete tumor encapsulation (P = 0.0235) and absence of distant metastasis (P = 0.00281). No association of p-AMPK with tumor size (P = 0.775) or p-AMPK with distant metastasis (P = 0.097).</td>
</tr>
<tr>
<td>William, 2011 (81)</td>
<td>Lung</td>
<td>USA</td>
<td>Patients who underwent surgical resection for NSCLC</td>
<td>32–90</td>
<td>1997–2005</td>
<td>463</td>
<td>4.1</td>
<td>p-AMPKα (Thr172) Cell Signaling Technology; IHC</td>
<td>Higher p-AMPK associated with improved OS (P = 0.0009) and recurrence-free survival (P = 0.0007) in all patients, and in patients with adenocarcinoma (P = 0.0001 and 0.001, respectively). No association of p-AMPK with OS (P = 0.35) or recurrence-free survival (P = 0.11) in patients with squamous cell carcinoma.</td>
<td>No association of p-AMPK with overall pathologic stage (P = 0.61), or N stage (P = 0.66).</td>
<td></td>
</tr>
<tr>
<td>Zupa, 2012 (82)</td>
<td>Lung</td>
<td>Italy</td>
<td>Patients who underwent surgical resection for NSCLC</td>
<td>43–83</td>
<td>1993–2005</td>
<td>47</td>
<td>NS</td>
<td>p-AMPKα (Ser485); Cell Signaling Technology; RPPA</td>
<td>Higher p-AMPK α at Ser485 (prevents AMPK activation) associated with worse OS (P = 0.0041) among 28 pathologic stage N0 patients. Higher p-ACC associated with worse OS (P = 0.0256) among 28 pathologic stage N0 patients.</td>
<td>No association of p-AMPK with recurrence or survival (data not shown).</td>
<td></td>
</tr>
<tr>
<td>Nanjundan, 2010 (83)</td>
<td>Lung</td>
<td>USA</td>
<td>Patients who underwent surgical resection for NSCLC</td>
<td>48–81</td>
<td>NS</td>
<td>46</td>
<td>NS</td>
<td>p-AMPKα (Thr172); Cell Signaling Technology; RPPA</td>
<td>No association of p-AMPK with recurrence or survival (data not shown).</td>
<td>Higher p-ACC associated with disease recurrence (P = 0.010). No association with survival (data not shown).</td>
<td></td>
</tr>
<tr>
<td>Li, 2014 (84)</td>
<td>Ovary</td>
<td>USA</td>
<td>Patients included on a commercially available ovarian cancer tissue array (OVC1021, Puritans Lavo Inc.)</td>
<td>NS</td>
<td>NS</td>
<td>97</td>
<td>NA</td>
<td>p-AMPKα (Thr172); Cell Signaling Technology; RPPA</td>
<td>Higher p-ACC associated with lower tumor stage (data not shown).</td>
<td>Higher p-ACC associated with lower tumor stage (data not shown).</td>
<td></td>
</tr>
<tr>
<td>Tsavachidou-Fenner, 2010 (85)</td>
<td>Kidney</td>
<td>USA</td>
<td>Patients with metastatic renal cell carcinoma who underwent nephrectomy, post-treatment with bevacizumab–erlotinib or bevacizumab alone</td>
<td>Median: 61</td>
<td>NS</td>
<td>37</td>
<td>NS</td>
<td>p-AMPKα (Thr172); Cell Signaling Technology; RPPA</td>
<td>Higher p-ACC associated with improved OS (P = 0.00003).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer, 2013 (86)</td>
<td>Kidney</td>
<td>USA</td>
<td>Clear-cell renal cell carcinoma patients included in the publicly available TCGA database</td>
<td>NS</td>
<td>NS</td>
<td>411</td>
<td>Up to 10 years</td>
<td>p-AMPKα (Thr172); RPPA</td>
<td>Higher p-AMPK associated with improved OS (P < 0.0001).</td>
<td>Higher p-ACC associated with worse OS (P < 0.01).</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: NA, not applicable; NS, not specified; p-ACC, phosphorylated acetyl-CoA carboxylase; p-AMPK, phosphorylated AMP-activated protein kinase; P-AMPK/3’; extracellular signal-regulated kinase (ERK)1/2; RPPA, reverse-phase protein array.

*aColor code: green, improved survival or favorable clinical features associated with AMPK activation; red, worse survival or unfavorable clinical features associated with AMPK activation; gray, null results.

*bPersonal communication.
correlated with advanced tumor stage, but not with the number of affected lymph nodes, in specimens from 60 colorectal cancer patients (92).

With the exception of Zupa and colleagues and Vetvik and colleagues, these studies suggest that higher tumor expression of specific AMPK subunits may be related to favorable clinicopathologic features and improved outcomes among cancer patients. Additional studies are warranted to confirm these findings in larger study populations and across cancer sites.

Differential expression of AMPK/ACC in tumor versus normal tissue has been reported in a few neoplasms, including liver (80), ovarian (90, 91), thyroid (94), cervical (95), brain (47), skin (87), prostate (63, 71, 72, 96), and colorectal cancer (92).

In hepatocellular carcinoma, protein expression of p-AMPKα1 at Thr172 was downregulated in 62% of tumor versus distant normal liver tissue (80). In ovarian specimens, protein expression of p-AMPKα1 at Ser182 was significantly higher (P = 0.038) in carcinoma compared with borderline tumors and normal ovaries (90). Li and colleagues also found higher expression of the genes encoding AMPKα2, β1, β2, γ1, and γ2 (P < 0.001), but not AMPKα1 (P = 0.320), in primary cancer versus normal ovarian tissue (91). In papillary thyroid carcinoma patients, protein expression of total AMPKα was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95).

In prostate cancer patients, both p-AMPKα1 at Thr172 and p-ACC at Ser79 were elevated (P < 0.001) in carcinoma versus paired nonneoplastic tissue (94). Similarly, protein expression of AMPKα1 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95).

In hepatocellular carcinoma, protein expression of p-AMPKα1 at Thr172 was downregulated in 62% of tumor versus distant normal liver tissue (80). In ovarian specimens, protein expression of p-AMPKα1 at Ser182 was significantly higher (P = 0.038) in carcinoma compared with borderline tumors and normal ovaries (90). Li and colleagues also found higher expression of the genes encoding AMPKα2, β1, β2, γ1, and γ2 (P < 0.001), but not AMPKα1 (P = 0.320), in primary cancer versus normal ovarian tissue (91). In papillary thyroid carcinoma patients, protein expression of total AMPKα was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95).

In hepatocellular carcinoma, protein expression of p-AMPKα1 at Thr172 was downregulated in 62% of tumor versus distant normal liver tissue (80). In ovarian specimens, protein expression of p-AMPKα1 at Ser182 was significantly higher (P = 0.038) in carcinoma compared with borderline tumors and normal ovaries (90). Li and colleagues also found higher expression of the genes encoding AMPKα2, β1, β2, γ1, and γ2 (P < 0.001), but not AMPKα1 (P = 0.320), in primary cancer versus normal ovarian tissue (91). In papillary thyroid carcinoma patients, protein expression of total AMPKα was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95). In a small study of brain cancer, high protein expression of AMPKα1 at Ser182 was significantly higher (P < 0.001) in tumor versus normal epithelium in cervical cancer patients (95).
1 study of endometrial cancer patients (121), decreased in another study of endometrial cancer patients (122), and unchanged in 2 studies of endometrial (123) and prostate (124) cancer patients. Thus, a direct link between short-term metformin use and AMPK activation in targeted tissue is unclear. Larger studies of longer duration and varying dosage of metformin use across various cancer types are needed to determine whether metformin acts through the AMPK pathway to influence tumor growth and progression.

Phenformin, a metformin analogue, is also a potent indirect activator of AMPK and was administered as antidiabetic medication starting in the mid-1900s. However, increased risk of lactic acidosis, often fatal, led to the withdrawal of phenformin by the FDA in 1977 (125). Phenformin has a longer half-life and displays more potent antineoplastic activity compared with metformin in in vitro and in vivo preclinical studies (126). In vitro studies of the antitumorigenic effects of metformin are often at supraphysiological concentrations that may be unattainable in humans; thus, phenformin may offer an alternative for chemoprevention or adjuvant therapy for cancer patients. Phenformin continues to be available in some parts of the world. In a recent cohort study of biguanide use and colorectal cancer risk in Denmark, phenformin comprised 0.5% of biguanide prescriptions (127). The investigators analyzed all biguanides as a group and found an increased risk of colorectal cancer among biguanide users compared with nondiabetics, and risk estimates were inconsistent when biguanide users were compared with diabetics on other oral antidiabetic drugs. These results conflict with the much of the current literature suggesting a reduced risk or null association for biguanide treatment and colorectal cancer incidence (99).

More recently, salicylate, the metabolic derivative of aspirin, has been shown to directly activate AMPK (69). Aspirin has long been known to exhibit antineoplastic properties, though whether these properties are mediated by AMPK is unknown. Algra and colleagues summarized the results for any aspirin use and long-term cancer incidence, reporting summary RRs (95% CI) of 0.88 (0.84–0.92) among 150 case–control studies and 0.87 (0.83–0.91) among 45 cohort studies for risk of all cancer types, with the most consistent findings suggesting reduced risk of colorectal cancer (128). Rothwell and colleagues summarized the results for regular aspirin use and cancer incidence and mortality among randomized controlled trials for the primary prevention of cardiovascular disease, reporting summary RRs (95% CI) of 0.88 (0.80–0.98) for cancer risk among 6 trials and 0.85 (0.76–0.96) for cancer deaths among 34 trials (129). This group also found that aspirin use among patients with non-metastatic adenocarcinoma at diagnosis was associated with a reduced risk of subsequent metastasis (summary RR, 0.45; 95% CI, 0.28–0.72) and cancer death (summary RR, 0.50; 95% CI, 0.34–0.74) among 5 randomized trials of daily aspirin for the prevention of vascular events (130). Additional observational and randomized studies support an association between regular aspirin use after diagnosis and improved survival outcomes among breast (131, 132), colorectal (ref. 133; reviewed in ref. 138), and prostate cancer (139, 140) patients, while other studies do not (141–144). Overall, the current evidence from long-term observational and randomized studies is strongly suggestive of a potential role for aspirin in the primary and secondary prevention of cancer.

In summary, observational and randomized studies suggest a potential benefit of AMPK-activating drugs for chemoprevention and/or improving cancer survival. These findings are in agreement with associations between AMPK activation levels in tumor tissue and more favorable clinicopathologic features and survival outcomes observed in several cancer types (Table 1). In future studies, it will be important to understand to what extent AMPK activation mediates the ability of these drugs to reduce cancer risk, and to define their action in the context of the metabolic status of the individual, concurrent medication use, and the natural history of cancer.

Conclusions

The duplicitous role of AMPK activation in cancer cells is context-specific and affects the outcome of AMPK modulation. More sophisticated genetic manipulation of AMPK is necessary to understand its biochemical and cell biology function in the different contexts. In addition, knowledge of long-term outcomes in healthy individuals and cancer patients in relation to AMPK status is necessary to inform the potential use of AMPK modulators in the clinical setting. Thus, the road toward a deeper understanding of AMPK’s role in cancer and its therapeutic exploitation is still under construction.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

This work was supported by the NIH/NCI grant 2R01CA131945, the DFFHC SPORE in Prostate Cancer (NIH/NCI P50 CA90381), the Prostate Cancer Foundation, the DOD synergist idea development award (PC130716) to M. Loda. J.L. Batista is supported, in part, by the Department of Defense Prostate Cancer Research Program (W81XWH-12-1-0072) and the Dana-Farber Cancer Institute Mazzone Awards Program.

Received February 6, 2015; revised April 17, 2015; accepted April 30, 2015; published OnlineFirst May 8, 2015.

References

28. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. The active form of

23. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interfer-

17. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of

68. Published OnlineFirst May 8, 2015; DOI: 10.1158/1541-7786.MCR-15-0068

The Dual Role of AMPK in Cancer

www.aacrjournals.org Mol Cancer Res; 13(7) July 2015 1069

Downloaded from mcr.aacrjournals.org on June 20, 2017. © 2015 American Association for Cancer Research.

Molecular Cancer Research

Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies

Giorgia Zadra, Julie L. Batista and Massimo Loda

Updated version Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-15-0068

Cited articles This article cites 143 articles, 48 of which you can access for free at:
http://mcr.aacrjournals.org/content/13/7/1059.full.html#ref-list-1

Citing articles This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/13/7/1059.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.