EphB1 Suppression in Acute Myelogenous Leukemia: Regulating the DNA Damage Control System

Abstract

Loss of ephrin receptor (EphB1) expression may associate with aggressive cancer phenotypes; however, the mechanism of action remains unclear. To gain detailed insight into EphB1 function in acute myelogenous leukemia (AML), comprehensive analysis of EphB1 transcriptional regulation was conducted. In AML cells, EphB1 transcript was inversely correlated with EphB1 promoter methylation. The presence of EphB1 allowed EfnB1 ligand–mediated p53 DNA binding, leading to restoration of the DNA damage response (DDR) cascade by the activation of ATR, Chk1, p53, p21, p38, CDK1Y15, and Bax, and downregulation of HSP27 and Bcl-2. Comparatively, reintroduction of EphB1 expression in EphB1-methylated AML cells enhanced the same cascade of ATR, Chk1, p21, and CDK1Y15, which consequently enforced programmed cell death. Interestingly, in pediatric AML samples, EphB1 peptide phosphorylation and mRNA expression were actively suppressed as compared with normal bone marrow, and a significant percentage of the primary AML specimens had EphB1 promoter hypermethylation. Finally, EphB1 repression associated with a poor overall survival in pediatric AML. Combined, the contribution of EphB1 to the DDR system reveals a tumor-suppressor function for EphB1 in pediatric AML.

Implications: The tumor-suppressor function of EphB1 is clinically relevant across many malignancies, suggesting that EphB1 is an important regulator of common cancer cell transforming pathways. Mol Cancer Res; 13(6): 982–92. © 2015 AACR.

Introduction

Ephrin tyrosine kinase receptors take part in the largest family of receptor tyrosine kinases, consisting of cell surface membrane bound kinases that include at least 14 receptors and 8 ligands. The most extensively investigated functions of ephrin receptors and ligands involve cell adhesion and migration via bidirectional signaling. Eph receptors are known for their contradictory function to promote or suppress cancer progression depending on their cellular contexts. EphA1/2/4/5/7 and EphB2/4 receptor overexpression has been shown to contribute to tumor growth and functionality in relation to normal lymphoid hematoopoiesis and functionality in relation to normal lymphoid hematoipoiesis (19). In contrast, Eph receptors can also fulfill tumor-suppressor functions. EphA2 receptor activation has been implicated to function as a tumor suppressor in breast cancer, non–small cell lung carcinoma and prostate cancer cells (6–9). Ephrin-A1 induced activation of EphA2 in breast cancer cells was shown to decrease in vivo tumorigenicity in mouse models (10, 11). Loss of EphB1 has previously been shown to associate with an aggressive cancer phenotype in gastric carcinoma and serous ovarian cancers (12, 13). Various mechanisms are described to suppress EphR expression in cancer pathogenesis; transcriptional repression of EphB2 by c-REL, frequent deletion of the chromosomal region 1p36 encounters EphA2, EphA8, and EphB2 loss in many cancers, or hypermethylation of the CpG Island on the promoter regions resulting in loss of function of EphB6 in breast cancer, EphB2 in colorectal cancer and EphA7 in prostate cancer (10, 11, 14–18). In EfnB1 Lck-Cre KO mice, it has been shown that Efn ligands are redundant in expression and functionality in relation to normal lymphoid hematoipoiesis (19). In contrast, in acute lymphoid leukemia (ALL), the number of epigenetic-inactivated Eph receptors and ligands was associated with a shortened overall survival (OS; ref. 20). In focus of EphB4 hypermethylation, reexpression of EphB4 by constitutive overexpression in an ALL cell line reduced the leukemic cell proliferation and increased apoptosis. Data on mechanistic consequences related to Eph receptor loss of function are scarce. In this study, we aimed to gain detailed biologic insight into the Eph receptor signaling in acute myelogenous leukemia (AML).

In this study, we explored the expression of Eph receptors and found a common downregulation of EphB1 assigned to
promoter hypermethylation. Interestingly, biologic insights revealed a tumor-suppressor function for EphB1 in AML by coordinating the DNA damage response (DDR) system. Reintroduction of EphB1 blocked AML cell-cycle progression and activated programmed cell death pathways. Clinical consequence of EphB1 suppression in AML was manifested in its association with a longer time to reach a complete remission and a poorer OS.

Materials and Methods

Patient samples and AML cell lines

After getting written informed consent, the mononuclear cell fraction (MNC) of bone marrow from healthy controls (NBM, normal bone marrow) and pediatric AML patients was obtained and cryopreserved, approved by the Medical Ethical Committee of the University Medical Center Groningen METC 2010.036 and 2013.281. The cryopreserved bone marrow cells were thawed...
Kampen et al.

A

Untreated

EfnB1

G2/M
68%
47%

G0/G1
22%
18%

Propidium DNA staining

B

Ctrl

EfnB1

THP-1

Phospho-Histone H3

Ctrl

EfnB1

51.2%
37.6%

50%

D

THP-1

Phosphorylation intensity

C

THP-1

Contr

EfnB1

Apoptosis

BCL-2

Bax

CyclinB1

pCDK1

tCDK1

Actin

E

THP-1

Ctrl

EfnB1

p-p38

pATR

actin

pChk2

pChk1

pS3

Actin

pSrc

Actin

F

THP-1

Ctrl

EfnB1

Relative mRNA expression

p21

p53

G

THP-1

Ctrl

EfnB1

Expression levels

p53 Ch-IP

p21

MDM2

H

THP-1

H860

MOLM13

OCI AML

Ped NBM

pH2AX

Actin

I

THP-1

Ctrl

EfnB1

NOS activity

0

0.5

Etoposide (µg/mL)

*p<0.05

**p<0.01
rapidly at 37°C and diluted in a 6 mL volume of newborn calf serum, as described previously (21).

The cell lines HL60, THP-1, HEL, NB4, and MOLM13 were obtained from the ATCC, cultured in RPMI-1640 medium (Lonza) supplemented with 1% penicillin-streptomycin (Life Technologies Europe BV) and 10% FCS (Bordone). AML patients' samples and AML cell lines all showed severe DNA damage by pH2AX and not in pediatric NBM (Supplementary Fig. S1A).

Compounds
EfnB1 ligand was used in culture to stimulate EfnB1 receptor on AML cells (1 μg/mL recombinant mouse Ephrin B1 ligand, Fc Chimera; R&D Systems). 5-Aza-2-deoxycytidine (200 nmol/l; Sigma Aldrich) was used as a demethylating agent. Control Fc chimeric protein did not show relevant in vitro effects (data not shown). Etoposide (20 mg/mL stock) was used at a concentration of 0.5 μg/mL as a genotoxic agent.

Fluorescence-activated cell sorting
Cells were blocked by PBS 1% BSA (Sigma Aldrich), and stained with EfnB1 antibody (Clone 88512; R&D systems) or CD34-PE and CD38-PerCP-Cy5.5 antibodies (BD Biosciences). Primary EfnB1 antibodies were visualized using a Rabbit anti-Mouse PE-conjugated secondary antibody (Dako cytometry).

For apoptosis analysis, the AML cells were stained with 100 μL of Annexin V-propidium iodide (PI) solution (1 mL staining buffer, with the addition of 20 μL Annexin V–FITC/PE, and 20 μL PI; Roche). For cell-cycle analysis, cells were fixed in methanol, blocked and incubated with 2 μL phospho-Histone H3 antibody (Cell Signaling Technology) for 20 minutes, washed and stained with 2 μL PI. For proliferation analysis, cells were incubated with BrdUrd (5-bromo-2-deoxyuridine) for 4 hours after which the cells were fixed, denatured, and stained for anti-BrdUrd that was visualized with a Rabbit anti-Mouse FITC–conjugated secondary antibody (Dako cytometry). AML cells were analyzed using LSRII (BD FACS DIVA software; BD Biosciences).

ADAM17 ELISA
The human ADAM17/TACE duoset was used to determine ADAM17 shedding involvement in EfnB1 cleavage in THP-1 cells. THP-1 cells (1 × 10⁶) were left for 24 hours either untreated or treated. Cells were collected in cell lysis buffer (Cell Signaling Technology) supplemented with 1 mmol/L phenylmethylsulfonylfluoride (Sigma Aldrich) and analyzed for ADAM17 protein expression according to the manufacturer’s protocol (R&D systems).

Western blot analysis
A total of 1 to 2 × 10⁶ HL-60, THP-1, and MOLM13 cells were lysed in laemmlili sample buffer (Bio-Rad laboratories). Proteins were separated by SDS-PAGE, and transported to nitrocellulose membranes. The membranes were incubated overnight with monoclonal primary antibodies for pATR, pCDK1 (Tyr15), CDK1, CyclinB1, pChk1, pChk2, p21 (Cell Signaling Technology), Bcl-2, Bax (CalBiochem; Merck), EfB1 and actin (Santa Cruz Biotechnology), and p53 (Pab240 from Abcam) and for 1 hour with horseradish peroxidase–conjugated secondary antibodies (DAKO cytometry). Protein bands were visualized by chemiluminescence, on an X-ray film.

Human phospho-kinase antibody array
Human Phospho-Kinase Antibody Array kits were used from R&D Systems to measure protein phosphorylation (46 phosphorylation sites corresponding to 36 proteins) according to the manufacturer’s protocol. The protein spots are visualized by chemiluminescence, on an X-ray film, and scanned. Signaling intensity of the proteins was analyzed with array software and processed as described previously (ScanAlyze; Eisen Software, http://rana.lbl.gov/eisen; ref. 22).

Quantitative real-time PCR
EfnB1, p21, Bcl-2, and p53 mRNA expression levels were analyzed using SYBR Green quantitative real-time PCR (qRT-PCR; Applied Biosystems Applera) with HPRT as a reference gene. Complementary DNA synthesis was accomplished from 1 μg RNA (RNeasy mini kit; Qiagen). Relative mRNA expression levels of the gene of interest were calculated using the ΔΔCt method relatively to the mean HPRT mRNA expression levels. Primer sequences are depicted in Supplementary Table S1.

Cloning retroviral vectors
Retroviral supernatants were generated by cotransfection pMSCV–iGFP constructs, or empty vector pMSCV–iGFP, and packaging plasmid pClampho into 293T cells by using FuGENE HD transfection reagent (Roche). Transduction efficiency was measured by FACS analysis (Supplementary Fig. S1C and S2C).

DNA bisulfite treatment and methylation analysis
DNA was isolated according to the manufacturers’ (Qiagen; DNA mini kit) protocol. DNA was modified with sodium bisulfite. Bisulfite pyrosequencing and bisulfite sequencing was performed as described previously (20). DNA methylation density ranged from 5% to 96% for AML cell lines and 1% to 35% for

Figure 2.
EfnB1 induced G₂/M cell-cycle arrest is causative for the reduced proliferation and the increased apoptosis in EfnB1™THP-1 AML cells. A, flow cytometric analysis of cell-cycle compartments by PI DNA staining of viable THP-1 cells either untreated or EfnB1 treated for 24 hours. B, flow cytometric analysis of phospho-histone H3 mitotic staining of THP-1 cells either untreated or EfnB1 treated for 24 hours; flow cytometric BRDU incorporation analysis after 48 h EfnB1 treatment. C, immunoblot analysis of apoptosis and cell-cycle regulating proteins; Bcl-2, Bax, CyclinB1, phospho-CDK1 Tyr15, CDK1, and actin showing the effect of 72 hours EfnB1 stimulation of THP-1 cells versus untreated control cells. D, phosphoproteomic analysis of 72 hours EfnB1-stimulated THP-1 cells versus untreated control cells. This bar graph displays the absolute changes in protein kinase phosphorylation upon EfnB1 stimulation of THP-1 cells. E, immunoblot analysis of ATR, Chk1, Chk2, p53, p38, and Src phosphorylation in EfnB1-stimulated cells versus untreated THP-1 cells. F, Quantitative RT-PCR analysis of p21 and p53 in 24 h EfnB1-stimulated THP-1 cells versus untreated control cells, confirming the phosphoproteome analysis (mean ± SEM; *, P < 0.001). G, ChIP analysis of p53 in EfnB1-treated THP-1 cells (20 hours) as compared with untreated controls. Quantitative RT-PCR for p21 and MDM2 was performed to determine p53 DNA-binding capacity (mean ± SEM; *, P < 0.001). H, DNA damage defined by phospho-γH2AX expression by immunoblot analysis of AML cell lines, pediatric NBM control samples, and pediatric AML patient samples. I, etoposide induced AML genotoxicity effects on the AML cell survival in untreated and EfnB1-treated THP-1 cells upon 48 hours treatment, as measured by WST-1 cell survival assay (mean ± SEM); *, significant difference between experimental groups; **, significant additive effects between experimental groups.
EphB1 Suppression in AML

Gene-expression data analysis

The Dutch Childhood Oncology Group (DCOG) pediatric AML cohort gene-expression array dataset was used for analyzing EphB1 expression in relation to clinical parameters. Details on gene-expression array analysis and the AML patient samples were previously described (GSE22056ID: 200022056; ref. 23). Data for the time to reach a complete remission were available for 79 patient samples. For the OS, we examined EphB1 (210753_s_at probe with highest coverage of the most unique EphB1 region) gene-expression data of 100 pediatric AML samples. The mean EphB1 expression (log2, of 4.59) was used as a cutoff point for the Kaplan–Meier analysis resulting in groups of 42 patients with low EphB1 expression and 58 patients with high EphB1 expression.

Validation dataset came from the St. Jude Children's Research Hospital that can be downloaded from the website: http://www.stjuderesearch.org/site/data/AML1 (24). This dataset contains gene-expression data of 97 pediatric AML patient samples divided into t(8;21), INV(16), 11q23, M7, and other cytogenetic subgroups pediatric AMLs with corresponding relapse data. Probe 210753_s_at expression (highest coverage of most unique EphB1 gene region) was log2 transformed to determine differences between favorable and unfavorable cytogenetic subgroups. Favorable cytogenetic subgroups; n = 21 for t(8;21) and n = 14 for INV(16), and unfavorable; n = 23 for 11q23 and n = 10 for M7 pediatric AMLs.

Chromatin immunoprecipitation

A total of 12.5 × 10^6 treated and untreated THP-1 cells were fixed in 1% formaldehyde for 10 minutes after which, with glycerine (1:20, 2.5 mol/l, Sigma Aldrich) was added. After a three-step cell lysis the cells were sonicated for 10 cycles of 20 seconds. Chromatin immunoprecipitation (ChIP) was performed by dissolving the nuclei pellets in 110 μl Chip Buffer (ChIP-IT Express Chromatin Immunoprecipitation Kit, Active Motif) with protease inhibitors, putting aside 10 μl input DNA. Lysates were incubated with 2 μg p53 antibodies (PAb1620 or PAb240 from Abcam) for 4 hours, thereafter, adding 60 μl Dynabeads (Life Technologies). After reverse cross-linking DNA was purified from IP samples and input DNA according to the manufacturer's protocol (PCR purification kit; Qiagen).

Cell survival assays

Quantification of leukemia cell viability was carried out using WST-1 assays for AML cell lines. WST-1 assays were performed in triplicates according to the manufacturer's protocol (Roche). Cells were seeded at a density of 1 × 10^5 cells per 100 μL/well.

Mitochondrial activity of AML cell was measured after 48 hours using a microplate reader at 450 nm (Benchmark, Bio-Rad Laboratories). Cell survival percentages are determined relative to untreated cells.

Statistical analysis

Mean and SDs of at least three independent evaluations are represented. Statistical package for the social science (SPSS 17) software was used for graphing box-plots. Significant correlations were determined using a Pearson correlation coefficient (Fig. 1A). The Mann–Whitney U tests were used to determine significant differences between two individual patient groups (as indicated). The Kruskall–Wallis test was used to examine differences between more than two patient groups for significance (as indicated). Unpaired two-tailed Student t tests were used for all in vitro cell line analysis comparing two conditional experimental groups in at least triplcates. The paired samples t test was used for determining the overall effect of EphB1 overexpression in AML cell lines and primary AML samples. The Kaplan–Meier analysis was used for defining the cumulative survival based upon high or low EphB1 expression.

Results

EphB1 suppression in AML: a role for DNA methylation

Common genetic deregulation of EphR in cancer pathogenesis urged us to determine the different levels of EphR transcriptional regulation in various AML cell lines. We examined a panel of AML cell lines for their EphA and EphB receptor and EfnB ligand mRNA expression levels in comparison with their promoter methylation density (the percentage of CpG sites methylated for the particular gene promoter) using quantitative RT-PCR and bisulfite pyrosequencing, respectively (Fig. 1A). Interestingly, among EphA and EphB receptors, the promoter of EphB1 was frequently methylated and presented a unique significant inverse correlation between EphB1 mRNA expression levels and promoter methylation (Pearson correlations. P = 0.317 for EphA2, P = 0.841 for EphB1, P = 0.301 for EphA6, P = 0.256 for EphA7, P = 0.010 for EphB2, P = 0.116 for EphB2, P = 0.153 for EphB3, P = 0.198 for EphB4, P = 0.094 for EphB6, P = 0.469 for EfnB1, and P = 0.544 for EfnB2).

EfnB1 mediated growth inhibition and apoptosis of EphB1-expressing AML cells

To gain mechanistic insights into the suppressive role of the EphB1 forward signaling in AML, we investigated the influence of EfnB1 stimulation on AML cell proliferation and survival in AML cell line models. First, we examined EphB1 membrane protein expression in AML cell lines. Approximately 70% of the THP-1 cells express EphB1 on their cell surface (EphB1^{lo}), only 25% to 50%
Figure 4. EphB1 suppression in primary pediatric AML. A, bar graph of Ephrin receptor peptide activity in pediatric AML (n = 6) and NBM (n = 5) lysates (mean ± SEM; *P = 0.022). B, the left box-plot presenting the mean EphB1 mRNA expression levels as determined using quantitative RT-PCR in NBM controls (n = 8), other pediatric AML samples (n = 9, NK, INV(16), t(8;21), insertion 8, -9q), and unfavorable AML pediatric patient samples (n = 18, complex and 11q23; mean ± SEM, P = 0.103). The right box-plot shows the EphB1 methylation density in NBM controls (n = 4), other pediatric AML samples (n = 11), and unfavorable AML pediatric patient samples (n = 10; mean ± SEM, P = 0.03). (Continued on the following page.)
EfnB1 induced G₂–M cell-cycle arrest of EphB1-expressing AML cells

We hypothesized that the phenotypic effects of growth inhibition and the induction of apoptosis could be assigned to a defect in cell-cycle regulation. Cell-cycle analysis upon EfnB1 ligand stimulation of EphB1^{high} cells revealed an increase in the number of cells in G₂–M phase of the cell cycle after which these cells were prone to go into apoptosis (Fig. 2A, paired samples t test, P = 0.028). Here, we show that the number of phospho-histone H3–expressing mitotic cells decreased by 40% upon EfnB1 treatment in THP-1 (Fig. 2B). In line with these findings, we observed a 25% reduction in the amount of proliferating cells after 48 hours EfnB1 treatment and 4 hours of BedUrd incorporation (Fig. 2B). Confirming the induction of apoptosis, immunoblot analysis showed a downregulation of antiapoptotic Bcl-2 and an induction of proapoptotic Bax_m (Fig. 2C). Simultaneously, the phosphorylation of the inactivating CDK1 (CDCK2) Tyr15-site was upregulated in EfnB1-stimulated THP-1 cells, which might be initiated by the increased total CDK1 protein levels that we found (Fig. 2C). In addition, CyclinB1 protein expression was enhanced in EfnB1 treated THP-1 cells. Phospho-proteome analysis of untreated and EfnB1-stimulated THP-1 cells unraveled downstream machinery that contributed to the G₂–M cell-cycle arrest (Fig. 2D). As expected, the phosphorylation of cell-cycle regulators p27, p38 and p53 was increased upon EfnB1 stimulation of EphB1^{high} AML cells. Moreover, to gain more insights into the downstream cell-cycle inhibitor p21 was increased together with p53 total protein expression by EfnB1 stimulation of THP-1 cells, whereas phosphorylation of Chk2 remained largely unchanged (Fig. 2E). Moreover, Src phosphorylation showed to be decreased by EfnB1 treatment in THP-1 cells. In accordance with proteomics, quantitative RT-PCR analysis showed that the expression of p53 was increased together with downstream cell-cycle inhibitor p21 (Fig. 2F, Student t test, both p21 and p53 P < 0.001). ChiP of p53 followed by quantitative RT-PCR analysis of p53 distal binding sites on p21 and MDM2 revealed that EfnB1 stimulation of THP-1 cells significantly increased the p53 DNA binding capacity (Fig. 2G, Student t test, both p21 and MDM2 P < 0.001). EfnB1 induced cell cycle inhibitory effects were not observed in EphB1<i>low</i> HL60 AML cells (Supplementary Fig. S1B). These data implicate that EfnB1 can induce a G₂–M cell-cycle arrest in EphB1^{high} AML cells by enhancing p53 DNA binding that prevents AML cells from entering mitosis and finally results in apoptosis. The restoration of the DDR system upon EfnB1 treatment can only occur in the presence of DNA damage.

Programmed cell death as a consequence of EphB1 reintroduction in EphB1 methylated AML cell lines

Using 5-Aza-2’-deoxycytidine as demethylation treatment in EphB1-methylated HL60 AML cells, we found an increase in EphB1 protein expression by flow cytometry, suggestive for reversible EphB1 promoter demethylation (Fig. 3A, Student t test, P < 0.001). To specifically determine whether the EphB1 receptor was indeed the main mediator of the EfnB1 induced cell-cycle arrest, we introduced EphB1 overexpression DNA constructs in the EphB1 hypermethylated AML cell lines HL60 (p53-null) and MOLM13 (p53-wildtype), using a constitutive promoter in front of the EphB1 gene to induce constitutive transcription. An empty vector control was used as reference. Reintroduction of constitutive EphB1 mRNA expression increased EphB1 transcription by more than 1,000-fold in both AML cell lines (Fig. 3B, Student t test, P < 0.001 for HL60 and MOLM13). Flow cytometric analysis showed an induction in EphB1 membrane expression in both AML cell lines (Fig. 3B). Western blot analysis confirmed the induction of EphB1 protein expression in EphB1 overexpression AML cell lines (Fig. 3B). Cell-cycle progression by BedUrd incorporation showed a decreased percentage of proliferating AML cells in EphB1 overexpression MOLM13 cells (Fig. 3C). Reintroduction of EphB1 into HL60 and MOLM13 cells presented a distinct phenotype, characterized by an increase in apoptosis solely of the EphB1 transduced populations relatively to empty vector control cells (Fig. 3D, Supplementary Fig. S1C, Student t test, MOLM13 P < 0.001). Next, we showed that the remaining viable EphB1-overexpressing cells were increasingly susceptible to EfnB1 ligand–induced apoptosis as compared with empty vector controls in both AML cell lines (additional 20%–40% increase in apoptosis, Fig. 3D). Reexpression and subsequent stimulation of the EphB1/EphB1 forward signaling in EphB1-methylated AML cells markedly decreased the AML cell survival in two independent cell lines (Supplementary Fig. S1D, paired samples t test, P = 0.040, overall apoptosis induction 16% ±
EphB1 suppression associated with unfavorable cytogenetics, relapses and decreased probability of OS in pediatric AML: a role for EphB1 methylation

To evaluate whether our proposed model also persists in primary pediatric AML, we extended our analysis from previous study by including NBM controls from the high-throughput kinase activity arrays (25). We showed that kinase activity of the EphB1 peptide was significantly lower in pediatric AML sample lysates as compared with NBM lysates (Fig. 4A and Supplementary Fig. S2A, Mann–Whitney U test, P = 0.022). Next, we analyzed EphB1 mRNA expression levels in a cohort of pediatric AML patient samples (n = 27) and NBM controls (n = 8). EphB1 mRNA expression was found to be significantly reduced in AML as compared with NBM (Mann–Whitney U test, P = 0.030). Interestingly, AML samples from patients with cytogenetically unfavorable prognosis showed significantly lowest EphB1 mRNA expression, followed by samples from patients with other karyotype, whereas NBM controls presented highest EphB1 mRNA expression levels (Fig. 4B, Kruskal–Wallis test, P = 0.013). Validation in a publicly available gene-expression dataset of an independent pediatric AML cohort confirmed that EphB1 expression was significantly lower in cytogenetically unfavorable pediatric AML as compared with favorable AML (Supplementary Fig. S2B, Mann–Whitney U test, P = 0.008). Bisulide pyrosequencing revealed increased methylation of the EphB1 promoter as compared with NBM in 4 of 21 AML samples. Hypermethylation of the EphB1 promoter was primarily found in unfavorable AML patient samples (Kruskal–Wallis test, Fig. 4B, P = 0.103). Using the DCOG pediatric AML gene-expression dataset, we found that EphB1 expression was significantly increased correlated with the time to reach a complete remission (Fig. 4C, Pearson correlation, P = 0.041). Interestingly, therapy-resistant AML patient samples expressed lower levels of EphB1 compared with therapy responders (Mann–Whitney U test, P = 0.026). Interestingly, the OS was associated with EphB1 expression (Pearson correlation, P = 0.008). Pediatric AML patients with low EphB1 expression showed a significantly reduced OS (Fig. 4D, Kaplan–Meier, P = 0.043).

We challenged to transduce two independent EphB1low primary pediatric AML patient samples with our established EphB1 overexpression construct and the empty vector controls. Patient AML1 showed a lack of EphB1 expression and high CD34 (~70%) and CD38 (~70%) expression levels by flow cytometry (Fig. 4E and Supplementary Fig. S2C). Patient AML2 presented low EphB1 (~27%) and CD34 (~30%) expression levels and high CD38 (~85%) expression levels. Transduction efficiencies were approximately 35% in AML1 and 75% to 90% in AML2 (Fig. 4F and Supplementary Fig. S2C). EphB1 overexpression increased membrane protein expression levels by ~50% (Fig. 4G and Supplementary Fig. S2C). In both AML samples, we found that EphB1 overexpression reduced the AML cell counts by 20% ± 3.5% at day 7 after transduction (Fig. 4H, paired samples t test, P = 0.016, cell counts 1.45 × 10^6 ± 9 × 10^5 in empty vector controls and 1.16 × 10^6 ± 7 × 10^5 in EphB1-overexpressing AML cells, SEM 3.6 × 10^5 and 2.9 × 10^5). These findings may suggest a tumor suppressor function for EphB1 in primary pediatric AML.

Discussion

Here, we describe that EphB1 was commonly suppressed in pediatric AML. When EphB1 is present, ligand activation restored the downstream DDR system (p53/p21/Bcl-2) through Chk1 phosphorylation-mediated repression of G2–M transition via CDK1^165. EphB1 reintroduction in EphB1 methylated AML cells operates through similar pathways for cell-cycle repression in AML, which allows p53-independent routes. The clinical impact of EphB1 suppression in pediatric AML is illustrated by the enhanced time to reach a complete remission and the association with a reduced OS. EphB1 promoter methylation affected 20% of the pediatric AML samples. These findings emphasize the importance of EphB1 functioning as a tumor suppressor in AML.

A previous study revealed that restoration of ligand-induced EphB4-regulated pathways in breast cancer biology is responsible for antioncogenic effects in vitro and in vivo (26). Here, we defined the antioncogenic effects of EphB1’s reintroduction and ligand-stimulatory effects on p53, Chk1, p21, CDK1, Bcl-2, and BAX as important regulatory proteins for downstream EphB1 signaling in AML. The increase in p21 was previously shown to be critical for nuclear retention of the CDK1–CyclinB1 complex by sustained phosphorylation of CDK1^165 (27). Among the affected pathways are important DDR proteins that facilitate an “anticancer barrier” of normal functioning cells to get rid of or repair DNA damaged cells. The DDR system was found to be commonly defective in AML (28). DNA damage was defined by increased levels of γ-HAX and phosphorylated AT1 in bone marrow biopsies of AML patients that correlated with blast percentages. These proteins were not expressed in healthy bone marrow biopsies. The investigators suggested that AML cells are defective in their DDR system due to inactivation of checkpoint kinases-1/2, which is in accordance with the paradigm established for solid tumors (29). In this study, we found that reintroduction of EphB1 expression and ligand-induced stimulatory signals partly restores the DNA damage control system via Chk1, which forced the AML cells in an G2–M cell-cycle arrest. The phenotype of EphB1 reintroduction was more apparent in AML cell lines compared with primary AML blasts, probably due to the fact that in general cell lines are increasingly DNA damaged during their passages, and their proliferation rate is higher compared with the primary blasts. The fact that HL60 p53-null cells are also vulnerable to EphB1 reintroduction may imply that EphB1 can also function via p53-independent activation of the Chk1/p21 cascade for G2–M suppression.

EphB1 expression is generally low in AML, which could only partially be explained by methylation in 20% of the AML patients. Another contributor may be chromosome 3 alterations in pediatric AML patients. EphB1 is located on chromosome 3q21. This location is a fragile site region of chromosome 3, and is mainly known to be affected in therapy-related adult AML. (30).
Chromosome 3 aberrations are rare in pediatrics, but do occur as translocations, inversions and deletions (30, 31). These genetic alterations may contribute to aberrant expression of EphB1 in AML patients. However, there are other mechanisms that may interfere with EphB1 expression. Overexpression of wild-type c-Cbl has been shown to enhance EphB1 ubiquitination and lysosomal degradation (32). This leaves the suggestion that c-Cbl overexpression may contribute to suppression of EphB1 expression and function. However, c-Cbl mutations do not frequently occur in pediatric AML (33). The tumor-suppressor function of EphB1 in AML and the association in a variety of cancers between loss of expression and aggressive tumor phenotypes implies that EphB1 is an important regulator of common cancer cell-transforming pathways (12, 13, 34). Conformingly, we used the MethHC DNA methylation database in human cancers (35) to analyze EphB1 promoter CpG site methylation and found common promoter hypermethylation enriched at the 5′ untranslated regions (Supplementary Fig. S3, all cancers P < 0.005). EphB1 promoter hypermethylation was significantly higher as compared with normal sample controls in many cancers, including breast, lung, cervical, colon, stomach, and prostate cancer. Similar to our NBM samples, the normal tissue sample controls showed no signs of methylation in the EphB1 promoter region.

In this study, we defined the biologic and clinical impact of EphB1 as a tumor suppressor in pediatric AML, which encourages further investigation on (epigenetic) mechanisms that regulate EphB1 expression and activation for the development of potential EphB1-inducing therapies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

EphB1 Suppression in Acute Myelogenous Leukemia: Regulating the DNA Damage Control System

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-14-0660-T

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2015/05/06/1541-7786.MCR-14-0660-T.DC1

Cited articles
This article cites 35 articles, 8 of which you can access for free at:
http://mcr.aacrjournals.org/content/13/6/982.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.