DAPK3 Suppresses Acini Morphogenesis and Is Required for Mouse Development
Brandon A. Kocher¹, Lynn S. White¹, and David Piwnica-Worms¹,²

Abstract

Death-associated protein kinase (DAPK3) is a serine/threonine kinase involved in various signaling pathways important to tissue homeostasis and mammalian biology. Considered to be a putative tumor suppressor, the molecular mechanism by which DAPK3 exerts its suppressive function is not fully understood and the field lacks an appropriate mouse model. To address these gaps, an in vitro three-dimensional tumorigenesis model was used and a constitutive DAPK3-knockout mouse was generated. In the 3D morphogenesis model, loss of DAPK3 through lentiviral-mediated knockdown enlarged acini size by accelerated acini proliferation and apoptosis while maintaining acini polarity. Depletion of DAPK3 enhanced growth factor-dependent mTOR activation and, furthermore, enlarged DAPK3 acini structures were uniquely sensitive to low doses of rapamycin. Simultaneous knockdown of RAPTOR, a key mTORC1 component, reversed the augmented acinar size in DAPK3-depleted structures indicating an epistatic interaction. Using a validated gene trap strategy to generate a constitutive DAPK3-knockout mouse, it was demonstrated that DAPK3 is vital for early mouse development. The DAPK3 promoter exhibits spatiotemporal activity in developing mice and is actively expressed in normal breast epithelia of adult mice. Importantly, reduction of DAPK3 expression correlates with the development of ductal carcinoma in situ (DCIS) and more aggressive breast cancer as observed in the Oncomine database of clinical breast cancer specimens.

Implications: Novel cellular and mouse modeling studies of DAPK3 shed light on its tumor-suppressive mechanisms and provide direct evidence that DAPK3 has relevance in early development. Mol Cancer Res; 13(2): 358–67. ©2014 AACR.

Introduction

Death-associated protein kinase 3 (DAPK3 or ZIPK) is a member of the DAPK serine/threonine protein kinase family and is known to regulate smooth muscle contraction, cell–cell adhesion, cytoskeleton dynamics, inflammation, as well as cardiovascular functions and is thought to serve as a tumor suppressor through regulation of caspase-dependent and -independent apoptosis, proliferation, and autophagy (1). The DAPK family contains 4 additional members, including DAPK1 (herein referred to as DAPK), DAPK2 (also DAPK-related protein 1), DRAK-1 and DRAK-2 (DAPK-related apoptosis-inducing protein kinase-1 and -2), which all share homology within their kinase domain. DAPK3 contains an N-terminal kinase domain that shares 80% amino acid homology with the prototypical DAPK and differs from other family members by the presence of a C-terminal leucine zipper motif and absence of calmodulin-regulated (CaM) and death domains.

Similar to other family members, DAPK3 is considered to be a tumor suppressor. Overexpression of DAPK3 in mammalian cells results in cell death and cell-cycle inhibition, whereas kinase-inactivating mutations along with recurrent deleterious somatic mutations are observed in lung and breast cancers, respectively (2–4). Knockdown of DAPK3 increases proliferation of various cell lines (2). Clinically, reduced DAPK3 mRNA correlates with increased tumor invasion, metastasis, and overall survival in patients with gastric carcinoma (5). Abrogation of DAPK3 mRNA expression was shown to significantly decrease cisplatin sensitivity in various lung cancer cell lines and may impact overall survival of patients with non–small cell lung cancer treated with platinum-based therapy (6). DAPK3 is also considered a potentially novel breast cancer gene as recurrent DAPK3 alterations were observed in both BRCA1 mutant and non-mutant breast cancers (3). In addition, human DAPK3 regulates a variety of signaling pathways commonly deregulated in cancer. For example, DAPK3 negatively regulates the canonical Wnt/β-catenin (CTNNB1) pathway by disrupting the interaction between Nemo-like kinase and T-cell factor 4 in colon cancer cell lines (7). It also regulates androgen receptor–mediated transcription via ubiquitination and degradation of androgen receptor in various cancer cell lines (8). DAPK3 also interacts with and/or phosphorylates various cancer-associated proteins in vitro, including ATF4, AATF, DAXX, PRKCD, and STAT3 (4, 9–12).

Despite these in vitro and clinical observations, the full physiologic significance of DAPK3 is not well understood. In addition, compared with the prototypical DAPK family member DAPK, relatively little is known about the functional tumor-suppressive mechanisms regulated by DAPK3. These limitations are potentially exacerbated by the lack of a knockout mouse model as well as inadequate cell culture models that cannot recapitulate the
using Fugene 6 (Promega). Forty-eight hours posttransfection, supplemented with 10% FBS and L-glutamine. 3D morphogenesis previously described (14) and 293T were cultured in DMEM in 2011 and not further tested. MCF10A cells were cultured as epithelial cell line forms hollow spheroids that undergo a regulated and coordinated series of biochemical and phenotypic events (14). This model has been used to investigate the contribution of loss-of-function (LOF) alterations to acini development and early events in tumor formation.

Herein, we describe the functional significance of DAPK3 in MCF10A acini morphogenesis and characterize the early lethality observed in a DAPK3-knockout mouse. We identified that DAPK3 negatively regulates MCF10A morphogenesis through an mTORC1/S6 (RPS6) pathway that is independent of enhanced AKT and ERK signaling. Our studies also shed light on an unexpected role for DAPK3 in mouse development as well as a spatially distinct expression pattern with potential relevance to human development and breast cancer. We also identified that DAPK3 is downregulated in aggressive breast cancer relative to less aggressive and normal patient samples.

Materials and Methods

Cell culture and reagents

MCF10A and 293T cells were obtained directly from the ATCC in 2011 and not further tested. MCF10A cells were cultured as previously described (14) and 293T were cultured in DMEM supplemented with 10% FBS and L-glutamine. 3D morphogenesis assays were conducted as previously described (14). Inhibitors used were LY294002 (Cell Signaling, 9901) and rapamycin (Sigma-Aldrich, R8781).

Plasmids viral production and lentiviral transduction

For DAPK3 overexpression, the DAPK3 ORF was PCR amplified (from Addgene plasmid 23436) and subcloned into pLVX-IRES-Hyg (Clonetech). PCR primers, forward: 5'-GAGAGACTCGAG-GCCACACATGTCAGCTTCAGCCAGGAG- and reverse: 5'-GAGAGACT CGAG-GCCACACATGTCAGCTTCAGCCAGGAG- were used to create the restriction enzyme sites XhoI and BamHI (in bold) that allowed for ligation into the corresponding sites in pLVX-IRES-Hyg. For RasV12 overexpression, HRasV12 was amplified and subcloned into pLVX-IRES-Hyg. PCR primers, forward: 5'-GAGAGACTCGAGGCCACCATGAGGAATATAAGCTGGTG- and reverse: 5'-GAGAGACTCGAGGCCACCATGAGGAATATAAGCTGGTG-, were used to create the restriction enzyme sites XhoI and BamHI (in bold) that allowed for ligation into the corresponding sites in pLVX-IRES-Hyg.

PlKO.1-puro constructs obtained from the Genome Institute at Washington University (St. Louis, MO) were used for RNAi against DAPK3. Sequences for the shRNAs are 5'-CGTFCAC-TACCTGACACTATAA (herein referred to as sh1), 5’-CCTAACGCC-GAGAATGACATT (herein referred to as sh2) and shNeg (15). For lentiviral production, 8 x 10^5 293T cells were co-transfected with pCMV-HSV-G, pCMV8.R8.2 and PlKO.1-puro constructs using Fugene 6 (Promega). Forty-eight hours posttransfection, viral supernatants were collected. MCF10A were subsequently incubated for 8 hours with filtered viral supernatants after which fresh media were added. The following day the media were replaced with a second round of viral supernatant after which fresh media were added for 24 hours. Stable cells were then selected using 1 μg/mL puromycin for 2 passages. Stable cells were then allowed to recover from selection for one passage before use in 2D and 3D assays. For 2D assays, stable cells were plated at an equal density such that they would be about 75% confluent at initiation of the experiment. PLKO.1-hygro shRNA constructs against RICTOR and RAPTOR (RPTOR) were generated by subcloning hygromycin in place of puromycin within the PLKO.1-constructs and similarly selected using 500 μg/mL hygromycin. For double knockdown, MCF10A were simultaneously infected with both appropriate shRNA-puromycin (shRNAπ) and shRNA-hygromycin (shRNAλ) virus and subsequently selected with both 1 μg/mL puromycin and 500 μg/mL hygromycin for one passage followed by one passage in normal media.

Immunofluorescence and confocal microscopy

MCF10A acini were grown in 8-well chamber slides and the indicated time points were fixed with 4% paraformaldehyde (PFA) in PBS for 30 minutes at room temperature. Slides were washed 3 times (15 minutes each wash) at room temperature in 100 mmol/L glycine in PBS and subsequently permeabilized with 0.05% Tween-20 in PBS, pH 7.4 for 20 minutes. Fixed acini were blocked in IF buffer (0.2% Triton X-100, 0.1% BSA-radiimmunoassay grade from Sigma-Aldrich, 0.05% Tween-20 in PBS, pH 7.4) plus 10% normal goat serum for 1.5 hours at room temperature and then blocked in secondary block containing IF buffer plus 10% goat serum and 20 μg/mL goat anti-mouse IgG (F(ab')2), primary antibodies were as follows: rabbit anti-Ki67 (Cell Signaling, 9129), rabbit anti-cleaved caspase-3 (Cell Signaling, 9579), rat anti-integrin alpha 6 (Millipore, MAB1378), and rabbit anti-giantin (GOLGB1) (Covance, PRB-114C). The following day, slides were washed 3 times in IF buffer for 20 minutes each and then incubated with 1 μmol/L TOPRO3 iodide (Molecular Probes) in PBS for 10 minutes at room temperature in a humidified chamber. Slides were then washed with PBS once for 10 minutes and mounted with Prolong Antifade mounting medium (Molecular Probes). Images were obtained using a Olympus IX-50 confocal microscope with a 20× water objective. Images were processed using the Olympus FV500 confocal software and a 20× water objective. Images were processed using the ImageJ software Ver.2.1a Viewer and ImageJ software. For Ki67 and cleaved caspase-3 evaluation, a total of 10 fields with at least 4 acini per field were acquired and then analyzed as discussed.

Acini diameter quantification, acini cell number, and statistics

Size analysis was performed using a hemocytometer and ImageJ software for each Brightfield image. At least 50 acini from a single field of view were analyzed for acini diameter. Cell number was quantified by counting the number of nuclei per acini from confocal images with frames of equal thickness. The Student t-test was used for statistical analysis (16).
Immunoblotting and analysis

Harvested cells were resuspended and sonicated in radioimmunoprecipitation assay (RIPA) buffer (50 mmol/L Tris-HCl, pH 7.4, 150 mmol/L NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholic acid) containing protease and phosphatase inhibitors [1 mmol/L phenylmethylsulfonyl fluoride (PMSF), 0.4 U/ml aprotinin, 10 μg/ml leupeptin, 10 μg/ml pepstatin, 1 mmol/L β-glycerophosphate, 0.1 mmol/L NaF, 0.1 mmol/L NaVO₄]. Proteins (30–80 μg) were fractionated on 10% Tris-HCl, Criterion Precast Gels (Bio-Rad). Separated proteins were transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore) and probed with the following antibodies: rabbit anti-DAPK3/ZIPK (Abcam, ab51602, or for K42A, Cell Signaling, 2928), rabbit anti-β-catenin (Santa Cruz, H-102), mouse anti-phospho-S6K1(p70/p85) (Cell Signaling, 9206), rabbit anti-S6K1(p70/p85) (Cell Signaling, 2708), rabbit anti-phospho-pS6 (Cell Signaling, 2215), mouse anti-S6 (Cell Signaling, 2317), rabbit anti-GAPDH (Sigma-Aldrich, G9545), rabbit anti-phospho-T308 AKT (Cell Signaling, 9275), mouse anti-AKT (Cell Signaling, 2920), rabbit anti-phospho-MAPK3/MAPK1 (ERK1/2) (Cell Signaling, 4370), rabbit anti-actin (Sigma-Aldrich, A2066), mouse anti-RAPTOR (Santa Cruz, sc-81537), and rabbit anti-RICTOR (Cell Signaling, 2140). Secondary horseradish peroxidase–conjugated anti-rabbit or anti-mouse antibodies (Sigma-Aldrich) were added and ECL Western Blotting Substrate or SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific) were used to visualize protein bands. For protein phosphorylation densitometry analysis, phospho-protein bands were first normalized to their respective total protein controls and then normalized to GAPDH.

Generation of DAPK3-knockout mice

The preconformed BayGenomics ES line YTA407 was acquired from the International Gene Trap Consortium, further confirmed in our laboratory, and then injected into albino C57BL/6 mice.
using traditional techniques (Mouse Transgenic Core, Washington University). One initial founder chimera was chosen due to high degree of chimerism as assessed by coat color and subsequently backcrossed onto a pure albino C57BL/6 background to N6 as determined by speed congenics.

Soft agar assay

MCF10A cells were first infected with RasV12, shNeg, sh1, or sh2 and then selected in puromycin (1 μg/mL) until mock-infected cells were dead. Following drug selection, 1 × 10⁴ stable cells were seeded into 6-well plates, and cells fed with fresh media twice a week. After 3 weeks, plates were stained with crystal violet overnight, washed and colonies manually counted.

Results

DAPK3 depletion augments acini morphogenesis

To investigate mechanisms by which DAPK3 exerts tumor-suppressive functions, we performed stable shRNA knockdown of DAPK3 in MCF10A cells grown on Matrigel using 2 independent hairpins. As discussed previously, this model permits interrogation of acini architecture development, which undergoes a series of highly conserved temporally concerted biochemical and phenotypic events. Loss of DAPK3 significantly enhanced acini diameter by approximately 37% ± 10% as compared with negative control shRNA at day 8 (Fig. 1A and B). Diameter enhancement was observed as early as day 4 and continued to increase over time, whereas the negative control plateaued at later time points.

Figure 2.

DAPK3-depleted acini exhibit increased proliferation and apoptosis. A, fluorescent confocal microscopy analysis of acini stained for Ki67 (green) and DNA (TOPRO3, blue). Depicted here is a representative image of 2 independent experiments. Error bars indicate 95% confidence intervals. *, P < 0.001. Scale bar, 100 μm. B, fluorescent confocal microscopic analysis of acini stained for cleaved caspase-3 (CC3, green) and DNA (TOPRO3, blue). Depicted here is a representative image of 3 independent experiments. Error bars indicate 95% confidence intervals. *, P < 0.0001 relative to control. Scale bar, 100 μm.
Consistent with a hyperplastic phenotype, DAPK3-depleted acini have significantly more cells per acini as evaluated using confocal microscopy and DNA staining (Fig. 1C). We did not observe any alterations in acini apical or basolateral polarity as indicated by proper localization of giantin and integrin α6, respectively (Fig. 1D). Interestingly, DAPK3 depletion alone was not capable of inducing anchorage-independent growth of MCF10A cells in soft agar as compared with control-positive cells expressing the HRasV12-transforming oncogene (Supplementary Fig. S1). However, stable knockdown of DAPK3 in late-passage HRasV12-expressing MCF10A cells displayed a trend toward augmented anchorage-independent growth (data not shown), and while not statistically significant, may merit further evaluation.

Loss of DAPK3 results in enhanced acini proliferation and apoptosis

It has been well established that size and morphogenesis of MCF10A acini are dependent on coordinated proliferation and apoptotic programs. To understand which of these processes was perturbed in DAPK3-knockdown structures, we performed confocal immunofluorescence microscopy on acini structures. DAPK3-depleted structures contained, on average, significantly more cells positive for expression of the proliferation marker Ki67, compared with negative control (Fig. 2A). Interestingly, loss of DAPK3 also significantly increased the number of acini containing cells positive for apoptosis as visualized by cleaved caspase-3, relative to negative control (Fig. 2B). This was additionally confirmed by ethidium bromide uptake in live MCF10A acini, which also indicated an increase in cell death in DAPK3-depleted structures (Supplementary Fig. S2). Thus, while there was a net increase in acinar size, we hypothesize that as the shDAPK3 structures underwent hyperproliferation, more cells lost contact with the ECM and as a result underwent apoptosis, a phenomenon which has been observed elsewhere (17).

DAPK3 overexpression disrupts normal acini formation

To determine whether DAPK3 overexpression impacts acinar morphogenesis, we stably overexpressed DAPK3 fused to GFP in MCF10A cells that were subsequently grown in 3D culture. Despite a large degree of toxicity observed in the packaging cells used to generate viral particles, we were able to achieve stable populations of MCF10A cells that survived selection. However, we were not able to achieve high overexpression of DAPK3 most likely due to overexpression toxicities in both target and packaging cells, which has been commonly observed across several cell types (2, 18). In addition, this expression was lost over time indicating negative selection for sustained high level expression of DAPK3. Despite these technical challenges, MCF10A structures that maintained overexpression (as indicated by GFP fluorescence) displayed a dramatic and significant decrease in structure size compared with empty GFP vector alone (Fig. 3A and B). We also attempted to determine whether this decrease in size was dependent on DAPK3 kinase activity but we were unable to achieve stable overexpression of a previously characterized kinase-deficient point mutant (K42A) fused to GFP (data not shown). However, confirmed stable overexpression of an unfused K42A mutant exhibited microscopic colony growth in soft agar highly similar to negative control, whereas a significant decrease was observed in stable cells overexpressing wild-type DAPK3 (Supplementary Fig. S3A), consistent with growth inhibition dependent on kinase activity. We confirmed the signaling competency of overexpressed FLAG-tagged DAPK3 in 293T cells. Specifically, transient overexpression of DAPK3 increased MLCP2 phosphorylation compared with K42A and empty vector (Supplementary Fig. S3B).

DAPK3 negatively regulates mTOR-S6K1-S6 signaling with no effect on ERK or AKT activation

To identify the pathways regulated by DAPK3 in this context, we initially compared our acini phenotypes to those of previous...
reports. Several groups have shown that enhanced mTOR activity leads to acini with abnormalities similar to those observed upon loss of DAPK3 (19–21). Indeed, knockdown of DAPK3 in MCF10A cells grown in 2D culture resulted in increased phosphorylation of S6 (P-S6) and both S6K1 isoforms (herein referred to as P-S6K1) when stimulated with EGF or insulin (Fig. 4A). We additionally observed an increase in P-S6 from MCF10A cells depleted of DAPK3 and grown in 3D culture for 6 days (Fig. 4B). Of note, in 2D and 3D experiments, we did not observe a concomitant increase in the activation of ERK or AKT signaling (Supplementary Fig. S4), which are upstream regulators of mTOR signaling (22).

Loss of DAPK3 influences proper acini morphogenesis through mTORC1

To further confirm that the observed increase in S6 signaling was functionally relevant, we treated established negative control and DAPK3-depleted acini with 100 nmol/L rapamycin once at day 4. Then, 4 days later, we observed that rapamycin had no significant effect on the diameter of the negative control. However, acini stably transduced with DAPK3 hairpins displayed a significant sensitivity to rapamycin treatment, showing a statistically significant decrease in acini diameter relative to no treatment (Fig. 5A). In addition, established shDAPK3 acini treated with increasing concentrations (100 nmol/L, 10 μmol/L, and 50 μmol/L) of the PI3K and mTOR inhibitor LY294002 displayed similar increased sensitivity to the drug compared with negative control (Fig. 5B).

To further delineate how DAPK3 regulates mTOR for proper acini morphogenesis, we stably knocked down DAPK3 and RICTOR or RAPTOR concurrently using previously reported hairpins (23). The mTOR catalytic subunit is shared between 2 distinct mTOR complexes, mTORC1 and mTORC2, which elicit the variety of functions of the mTOR pathway (22). Regulatory-associated protein of mTOR (RAPTOR) and rapamycin-insensitive companion of mTOR (RICTOR) are necessary components of the mTOR complexes comprising mTORC1 and mTORC2, respectively. Interestingly, we observed that concurrent loss of DAPK3 and RAPTOR blunted the increased acini size observed with DAPK3 depletion alone, whereas concurrent loss of RICTOR did not rescue the phenotype (Fig. 5C). In addition, loss of RAPTOR by itself had a profound impact on acini formation whereas knockdown of RICTOR did not.

These results identify an epistatic interaction between DAPK3 and the mTORC1 pathway with functional consequences through regulation of S6K1–S6 signaling and potentially other downstream mTORC1 effectors (Fig. 5D).

Generation and characterization of embryonic lethality in DAPK3-null mice

In an attempt to understand the in vivo contribution of DAPK3 to mouse mammary development, its overall role in mouse development, and DAPK3-specific oncologic recapitulations of ontogeny, we created a constitutive DAPK3 knockout mouse using a preconfirmed gene trap ES cell line from the International Gene Trap Consortium. As shown in Fig. 6A, the gene trap (Gt) is composed of a 5′ splice acceptor site (green) followed by a β-galactosidase–neomycin fusion (βgeo) (blue) and a polyA tail (red). We further confirmed that the locus and the entire gene trap were intact and incorporated into gDNA as a single insertion through Southern blot analysis using both external probes and an internal probe (Fig. 6B). Importantly, we determined that the gene trap integrated between the second and third exons. These embryonic stem (ES) cells were then used to generate a mouse using conventional blastocyst injection and animal husbandry techniques. Depletion of Dapk3 mRNA was later confirmed using quantitative PCR on genotyped ES cell lines derived from blastocysts produced by heterozygous crosses (Supplementary Fig. S5).

Despite grossly healthy heterozygous adults, we were unable to identify any homozygous Gt/Gt (Dapk3−/−) animals on a mixed 129Ola or backcrossed C57BL/6 (NS) background (Supplementary Table S1). We were also unable to locate homozygous Gt/Gt embryos at E12.5, E10.5, and E8.5, despite near Mendelian ratios for wild-type and heterozygous embryos, indicating early homozygous lethality (Supplementary Table S1). This was further confirmed by the presence of several sites of fetal resorption on uteri extracted from heterozygous crosses versus heterozygous and wild-type crosses (Fig. 6D). However, note that we were able to isolate and genotype Gt/Gt homozygous blastocysts at E10.5 (Fig. 6C), indicating that lethality was likely occurring postimplantation. Furthermore, there was no difference in distribution of homozygous embryos across blastocyst, morula, and premorula stages (data not shown).
Early mouse embryonic and adult expression patterns of \textit{Dapk3}

Overall, heterozygous animals appeared to develop and grow normally with no overt phenotypes under standard laboratory conditions. Taking advantage of the functional \textit{Dapk3} expression under standard laboratory conditions. Taking advantage of the functional \textit{Dapk3} promoter, we characterized the expression patterns of \textit{Dapk3} during the development of heterozygous mice. We observed distinct and strong \textit{Dapk3} activity in the developing heart of E8.5 and E10.5 embryos (Fig. 6E, top). In addition, E10.5 heterozygous embryos displayed localized activity within the developing notochord (Fig. 6E, bottom). As expected, no \textit{Dapk3} activity was observed in developing wild-type littersmates (data not shown).

Mouse breast epithelium expression and clinically observed down regulation of \textit{Dapk3}

To determine the potential use of \textit{Dapk3}-knockout mice for breast cancer studies, we wanted to confirm \textit{Dapk3} expression in mouse mammary epithelium. Because of our inability to locate antibodies that could detect endogenous mouse \textit{Dapk3}, we visualized \textit{Dapk3} expression using antibodies that recognized \(eta\)-galactosidase/LacZ as expressed from the gene trap downstream of the endogenous \textit{Dapk3} promoter. We observed strong and distinct staining in the mammary epithelium of heterozygous mouse mammary fat pads with no observable staining in wild-type littermate controls (Fig. 7A). Finally, to confirm that our cell culture and murine observations mimic those seen in actual patients, we analyzed the Oncomine database (www.oncomine.org). Indeed, \textit{Dapk3} mRNA is significantly downregulated in human ductal breast carcinoma in situ (DCIS) versus normal breast and invasive breast cancer versus DCIS, respectively (Fig. 7B and C).

\textbf{Discussion}

Herein, we have shown that loss of \textit{Dapk3} leads to increased acinar size and enhanced cellular proliferation and apoptosis without disrupting apical–basolateral polarity of MCF10A acini grown in 3D culture. Conversely, stable overexpression of \textit{Dapk3} inhibits acini morphogenesis and is relatively toxic to cells. Loss of \textit{Dapk3} augments acini morphogenesis through mTOR–S6 signaling. This regulation appears to be specific to the mTOR pathway as loss of \textit{Dapk3} enhanced S6K1–S6 phosphorylation, but not ERK or AKT.

Curiously, we found an increased sensitivity of MCF10A cells to rapamycin and the mTOR/P13K inhibitor

\textbf{Figure 5.}

\textit{Dapk3} inhibits acini morphogenesis through mTORC1/\textit{RAPTOR}. \textit{A}, analysis of MCF10A acini grown for 4 days and then treated with 100 nmol/L rapamycin for 4 days. Shown here are representative data of 2 independent experiments. Error bars indicate 95\% confidence intervals. * \textit{P} < 0.0001; ** \textit{P} < 0.005. \textit{B}, analysis of MCF10A acini grown for 4 days and then treated with varying concentrations of LY294002 (vehicle, 100 nmol/L, 10 \textmu mol/L, or 50 \textmu mol/L) for an additional 4 days. Error bars indicate 95\% confidence intervals of 3 combined independent experiments. * \textit{P} < 0.026. \textit{C}, analysis of day 4 acini from MCF10A cells stably expressing combinations of various shRNA hairpins. MCF10A were simultaneously transduced with indicated shRNA-puromycin (shNeg0, sh1P) and shRNA-hygromycin (sh\textit{RAPTOR}0, sh\textit{RICTOR}0) lentivirus. Shown here are representative data of 2 independent experiments. Error bars indicate 95\% confidence intervals. * \textit{P} < 0.01. D, proposed model for negative regulation of mTOR–S6K1–S6 signaling by \textit{Dapk3}.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{DAPK3 inhibits acini morphogenesis through mTORC1/\textit{RAPTOR}. \textit{A}, analysis of MCF10A acini grown for 4 days and then treated with 100 nmol/L rapamycin for 4 days. Shown here are representative data of 2 independent experiments. Error bars indicate 95\% confidence intervals. * \textit{P} < 0.0001; ** \textit{P} < 0.005. \textit{B}, analysis of MCF10A acini grown for 4 days and then treated with varying concentrations of LY294002 (vehicle, 100 nmol/L, 10 \textmu mol/L, or 50 \textmu mol/L) for an additional 4 days. Error bars indicate 95\% confidence intervals of 3 combined independent experiments. * \textit{P} < 0.026. \textit{C}, analysis of day 4 acini from MCF10A cells stably expressing combinations of various shRNA hairpins. MCF10A were simultaneously transduced with indicated shRNA-puromycin (shNeg0, sh1P) and shRNA-hygromycin (sh\textit{RAPTOR}0, sh\textit{RICTOR}0) lentivirus. Shown here are representative data of 2 independent experiments. Error bars indicate 95\% confidence intervals. * \textit{P} < 0.01. D, proposed model for negative regulation of mTOR–S6K1–S6 signaling by \textit{Dapk3}.
\end{figure}
LY294002 upon knockdown of DAPK3. Furthermore, this regulation is specific to mTORC1 and not mTORC2 as only loss of RAPTOR (and not RICTOR) partially rescued the augmented acinar morphogenesis observed upon loss of DAPK3. Acini lacking RAPTOR alone also exhibit suppressed acini diameter similar to that of DAPK3 and RAPTOR double knockdown acini. However, loss of DAPK3 combined with loss of RAPTOR was able to significantly overcome the inhibition observed in RAPTOR knockdown alone. While this effect was statistically significant, it remains formally possible that an additional mechanism by which mTORC1/RAPTOR suppresses acini morphogenesis is independent of DAPK3 and further studies are necessary. Strikingly, DAPK3 is required for early mouse development after blastocyst implantation. Our studies also suggest that DAPK3 is expressed in mouse mammary epithelium and that downregulation correlates with neoplastic progression in patients with breast cancer. Collectively, our data reveal a novel tumor-suppressive mechanism for DAPK3 and highlight its fundamental requirement for mouse development.

It is well known that the mTOR pathway plays an important role in cancer cell growth, survival, and proliferation (22). mTOR is the fundamental catalytic component of 2 distinct complexes, rapamycin-sensitive mTORC1 and rapamycin-insensitive mTORC2, each of which is composed of distinct protein complexes that alter the protein–protein interactions, subcellular localization, activity and substrate specificity of the active complex. Genetic ablation of key scaffolding proteins RAPTOR or RICTOR effectively prevents signaling through mTORC1 and mTORC2, respectively. Activation of the mTOR pathway is controlled by several upstream tumor suppressors, including LKB1 and NF1 (24, 25). Interestingly, several other members of the DAPK tumor suppressor family are known to regulate translation and be regulated by the mTOR pathway. Conflicting reports reveal that DAPK disrupts TSC1–TSC2 association, thereby enhancing mTOR activation and negatively regulates protein translation through an inhibitory phosphorylation at S235/236 of S6 (26, 27). However, Roux and colleagues revealed RSK-dependent phosphorylation at S235/236 actually promotes translation through a translational preinitiation complex (28). DRAK2 phosphorylates S6K1 in vitro and in vivo (29). DAPK3 itself is phosphorylated by DAPK in vitro and this DAPK–DAPK3 kinase cascade has been shown to inhibit transcript-
specific translation through phosphorylation of the ribosomal protein L13a and activation of an translational inhibitor complex known as the IFN protein L13a and activation of a translational inhibitor complex (18, 30). Further work is required to specify how DAPK3 negatively regulates mTOR–S6K1–S6 signaling. We hypothesize that DAPK3 can directly or indirectly inhibit mTORC1 signaling upstream of S6 or it may directly influence S6K1 or S6 similar to other DAPK family members. Overall, our data provide further evidence to indicate that DAPK family members are important regulators of translation and mTOR signaling.

Moreover, through the generation and characterization of a DAPK3-knockout mouse, our data reveal that DAPK3 is crucial to early mouse development. Our analysis indicates that DAPK3-deficient blastocysts are able to implant, but subsequent development is problematic. At this point in mouse embryonic development (E4.5–E6.5), various embryonic germ layers undergo differentiation, migration, and establishment of early morphologic axes (31). DAPK3 is known to regulate cellular migration and contraction and thus DAPK3 may be crucial for these early developmental events (32, 33). Remarkably, embryonic lethality was not anticipated given that Dapk3−/− mice develop normally as indicated by their overall basal health (34). This dichotomy raises a number of questions about signaling redundancies between DAPK and DAPK3 and highlights important developmental functions for DAPK3. Our data support the need for future development of conditional DAPK3-knockout mice, which may serve as relevant models for interrogating tumor-suppressive mechanisms for DAPK3 in mouse models of breast cancer. However, it is worth noting potential functional differences between human and murine DAPK3. Specifically, murine DAPK3 exhibits C-terminal amino acid substitutions that may impart differential signaling patterns or tumor-suppressive signaling mechanisms not seen in human systems (35). Nonetheless, our work identified that mouse Dapk3 exhibits localized expression in the developing heart and nervous system, and these expression patterns and developmental observations are of potential relevance to humans. Specifically, DAPK3 resides on chromosome 19p13.3, a region shared by 7 other genes in humans (ZFR2, ATCAY, NMRK2, EEF2, PIAS4, ZBTB7A, MAP2K2). Deletion of this locus correlates with facial and cardiac structural abnormalities, along with intellectual disabilities and developmental delays in affected patients (36).

Overall, the research presented herein indicates that suppression of mTOR–S6K1–S6 signaling by DAPK3 maintains proper acini morphogenesis and that DAPK3 is necessary for mouse development. Furthermore, these observations have potential implications for breast cancer and human development.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: B.A. Kocher, D. Piwnica-Worms
Development of methodology: B.A. Kocher, L.S. White, D. Piwnica-Worms
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B.A. Kocher, J.S. White
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): B.A. Kocher, D. Piwnica-Worms
Writing, review, and/or revision of the manuscript: B.A. Kocher, D. Piwnica-Worms
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B.A. Kocher
Study supervision: B.A. Kocher, D. Piwnica-Worms
DAPK3 Tumor Suppressor Acts through mTORC1

References

DAPK3 Suppresses Acini Morphogenesis and Is Required for Mouse Development

Brandon A. Kocher, Lynn S. White and David Piwnica-Worms

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-14-0333

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2014/10/11/1541-7786.MCR-14-0333.DC1

Cited articles
This article cites 35 articles, 17 of which you can access for free at:
http://mcr.aacrjournals.org/content/13/2/358.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/13/2/358.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.