Relocation of CLIC1 Promotes Tumor Cell Invasion and Colonization of Fibrin

Lisa A. Gurski1, Lynn M. Knowles1, Per H. Basse2, Jodi K. Maranchie1,2, Simon C. Watkins2,3, and Jan Pilch1,2,4

Abstract

Chloride intracellular channel 1 (CLIC1) has been shown to be upregulated in various malignancies but its exact function remains unclear. Here, it is revealed that CLIC1 is critical for the stability of invadopodia in endothelial and tumor cells embedded in a 3-dimensional (3D) matrix of fibrin. Invadopodia stability was associated with the capacity of CLIC1 to induce stress fiber and fibronectin matrix formation following its β3 integrin (ITGB3)-mediated recruitment into invadopodia. This pathway, in turn, was relevant for fibrin colonization as well as slug (SNAI2) expression and correlated with a significant role of CLIC1 in metastasis in vivo. Mechanistically, a reduction of myosin light chain kinase (MYLK) in CLIC1-depleted as well as β3 integrin-depleted cells suggests an important role of CLIC1 for integrin-mediated actomyosin dynamics in cells embedded in fibrin. Overall, these results indicate that CLIC1 is an important contributor to tumor invasion, metastasis, and angiogenesis.

Implications: This study uncovers an important new function of CLIC1 in the regulation of cell–extracellular matrix interactions and ability of tumor cells to metastasize to distant organs. Mol Cancer Res; 13(2); 273–80. ©2014 AACR.

Introduction

The central function of the clotting cascade is to sustain hemostasis; however, clotting factors also make important contributions to inflammation, wound healing, angiogenesis, and cancer (1–4). In the course of the clotting process, soluble fibrinogen is converted into insoluble fibrin that provides a provisional adhesive matrix for inflammatory, endothelial, and tumor cells (5). In the case of tumor metastasis, a key function of fibrin is to protect circulating tumor cells from the cytotoxic activity of natural killer cells (4). However, adhesion of tumor cells to 3-dimensional (3D) matrices of fibrin or fibrin–fibronectin also directly affects critical prometastatic functions such as invasion, survival, and colony formation (6, 7). In addition, 3D fibrin has been shown to provide a permissive environment for the maintenance and proliferation of tumor-initiating cells (8). Together, these data underscore that a thorough understanding of the adhesive interactions between tumor cells and blood clot could lead to novel strategies to inhibit tumor metastasis.

Fibrin and fibrinogen are specifically recognized by β3 integrins and it appears that the expression of activated integrin αvβ3 is required for the interaction of tumor cells with clotted plasma (6, 7). Moreover, paralleling its positive effects on invadopodia and colony formation in clot-embedded tumor cells, integrin αvβ3 has been shown to support tumor metastasis in a mechanism that depends on the generation of fibrin–fibronectin complexes (7). Fibronectin is critical for αvβ3-mediated functions in clot-embedded tumor cells in at least two ways: upstream as integrin as an activating stimulus for αvβ3 and downstream as an αvβ3 ligand that provides the necessary matrix rigidity for tumor cells to generate stress fibers, form colonies, and induce epithelial–mesenchymal transition (EMT), e.g., through expression of the EMT master regulator, Slug (6, 7). Interestingly, stress fiber formation is also associated with αvβ3-dependent maintenance and proliferation of tumor-initiating cells in fibrin, suggesting that mechanotransduction mediated by integrin αvβ3 is an important stimulus for expression of metastasis-related genes in clot-embedded tumor cells (6).

In search of factors that mediate the interaction of tumor cells with clotted plasma, we became interested in chloride intracellular channel 1 (CLIC1), which functions as an internalizing receptor for the clot-binding peptide CLTI on endothelial cells (9). CLIC1 is overexpressed in the tumor vasculature and frequently upregulated in patients with cancers originating from the breast, lung, and liver (10–12). Increasing concentrations of CLIC1 have also been detected in the serum of patients with aggressive ovarian cancer, suggesting that CLIC1 could be useful as a tumor marker (13). CLIC1 has been shown to induce invasion and proliferation of tumor as well as endothelial cells, but the mechanism behind this function is not clear (14, 15). We previously observed that ligation of integrin αvβ3 leads to redistribution of CLIC1 into lamellipodia of endothelial cells, suggesting that CLIC1 membrane recruitment is relevant for cell spreading (9). On the basis of the established role of...
integrin αvβ3 for clot invasion and the apparent cooperation between αvβ3 and CLIC1, we aimed to analyze the role of CLIC1 for invadopodia formation in fibrin-embedded endothelial and tumor cells.

Materials and Methods

Three-dimensional cell culture

Human umbilical venous endothelial cells (HUVEC) were purchased from Lonza, human 786-0 kidney cancer and HT1080 fibrosarcoma cells were purchased from the ATCC. Primary human tumor cells were isolated from kidney tumors of 2 patients with metastatic and 2 patients with localized RCC as previously described (6). The cells were designated as M1/2 (metastatic) and L1/2 (localized) accordingly. M1 was derived from a female (70–79 years) with metastasis to the lung (pT3bN0M1), while M2 was derived from a male (50–59 years) with metastasis to the lung, liver, and lymph node (pT3bN2Mx). The tumor stage of L1 (male, 40–49 years) was in each case pT1aNxMx. Cells were cultured at 37°C under a humidified, 5% CO2 atmosphere according to the manufacturers’ specifications. For 3D culture, cells were mixed with 2 mg/mL fibrinogen (Enzyme Research Laboratories, Inc.) in the presence of 2 mmol/L CaCl2 and 25 μg/mL FXIII (Enzyme Research Laboratories) to generate fibrin gels as previously described (6). Clotting was induced with 2.5 U/mL thrombin (Sigma), and 15 μL suspensions were pipetted onto tissue culture plates and inverted at room temperature for 10 minutes to solidify. Embedded cells were incubated with media supplemented with FBS at 37°C under a humidified, 5% CO2 atmosphere.

Invadopodia analysis

Clots were analyzed for invadopodia formation 24 hours after embedding at designated areas by phase contrast microscopy (Nikon Eclipse TS100; ×10 magnification). Invadopodia formation was classified as complete (i.e., elongated or stellate shape) or incomplete (i.e., round shape with or without rudimentary invadopodia) and calculated for completely spread cells as a percentage of the total cell number of a microscopy field. Colonization was measured by counting the total number of clot-embedded cells per microscopy field after 48 hours. In addition, we analyzed invadopodia formation over time by live cell imaging. To this end, fibrin-embedded 786-0 cells were transferred to a BioStation IM (Nikon) preequilibrated to 37°C, 5% CO2. Phase contrast images were captured every 10 minutes for 2 hours and then every 30 minutes for the next 22 hours to track invadopodia. Images and videos were prepared using the BioStation IM software. Using these images, ImageJ software track invadopodia. Images and videos were prepared using the BioStation IM software. Using these images, ImageJ software track invadopodia. Images and videos were prepared using the BioStation IM software.

Western blot analysis

Cell pellets were lysed by adding 2× SDS sample buffer. Proteins were separated by SDS-PAGE, transferred onto nitrocellulose, and stained with 0.05% Ponceau S (Sigma) to ensure equivalent protein loading. ImmunobLOTS were blocked with 5% bovine serum albumin and probed overnight at 4°C with anti-CLIC1 (Abcam), anti-fibronectin (Millipore), anti-Slug (Cell Signaling Technology), anti-MLCK (Sigma), anti-phospho-MLCK (Life Technologies), anti-β3 (BD Biosciences), and anti-β-Actin (Sigma) antibodies followed by incubation with peroxidase-conjugated anti-mouse or rabbit IgG antibody (Bio-Rad). Finally, the

Confocal microscopy

Fibrin-embedded cells were fixed in 4% paraformaldehyde, permeabilized with 0.2% Triton X-100 and incubated with anti-fibronectin (Millipore), anti-CLIC1 (Abcam), anti-β3 integrin (Abcam), anti-pMLC (Cell Signaling Technology), or isotype control, followed by incubation with Alexa Fluor 488- or 546-conjugated secondary antibody (Invitrogen). To visualize the cytoskeleton and nuclei, cells were stained with Alexa Fluor 546–phalloidin (Invitrogen) and Draq5 (eBioscience), respectively. The myosin light chain kinase (MLCK) inhibitor ML-7 was added at 10 μmol/L where indicated. Fibrin-embedded cells were analyzed using a confocal microscope (Leica TCSSL) and images were processed with Adobe Photoshop. To quantify fibronectin matrix formation, fibrin-embedded cells were stained for fibronectin as described except that the cells were not permeabilized. Confocal images (×20) were analyzed for the percentage area of fibronectin staining using ImageJ software. ImageJ was also used to assess CLIC1 expression in invadopodia and the cell periphery, which were identified using F-actin staining. To this end, we measured the average CLIC1 fluorescence intensities in the cell periphery/invadopodia compared with the cell interior (without the nucleus) and calculated the ratio between the two compartments.

Gene silencing

HUVEC were grown for 24 hours before transfection with 25 nmol/L CLIC1 (Dharmacon On-TARGETplus SMARTpool L-009530-00) or nontargeting control (Dharmacon On-TARGETplus D-001810-10) siRNA. SMARTpool siRNA contains a pool of four siRNA sequences directed against the target gene. Cells were transfected in Opti-MEM medium (Invitrogen) using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. After 6 hours, cells were placed in normal culture medium and grown for an additional 42 hours. To achieve stable knockdown of CLIC1 and β3 integrin, we transduced 786-0 and HT1080 cells with five lentiviral shRNA vectors compared with a scrambled control shRNA (University of Pittsburgh Cancer Institute Vector Core Facility, Pittsburgh, PA). For our experiments, we used the two clones with the highest knockdown efficiency for each target. Subconfluent cells were treated with virus suspension containing 8 μg/mL polybrene for 19 hours at 32°C, 5% CO2. Then, after a recovery phase of 24 hours in complete medium at 37°C, cells were placed under puromycin selection for 2 weeks. Target knockdown was confirmed by Western blot analysis and the two most efficiently knocked down clones were selected for further experimentation (CLIC1-2: CCGGTCCTGTGCGCAAAGTTACACATTCGAGATGTGTAAGTGGGACAGTGTTT TTG; CLIC1-4: CCGGTTGATGAGAAACCAGTGCCGATGACGTCTGCAGCTGTTT CATCCACCTTTTGTC; β3-3: CCGGCCAGTCTCATCTCCCATCCGACGCTTGGGTGAAGATCAGCTGTGTTT; β3-5: CCGGGGATGGAGATGACGTCTGCAGCTGTTT).

Confocal microscopy

Fibrin-embedded cells were fixed in 4% paraformaldehyde, permeabilized with 0.2% Triton X-100 and incubated with anti-fibronectin (Millipore), anti-CLIC1 (Abcam), anti-β3 integrin (Abcam), anti-pMLC (Cell Signaling Technology), or isotype control, followed by incubation with Alexa Fluor 488- or 546-conjugated secondary antibody (Invitrogen). To visualize the cytoskeleton and nuclei, cells were stained with Alexa Fluor 546–phalloidin (Invitrogen) and Draq5 (eBioscience), respectively. The myosin light chain kinase (MLCK) inhibitor ML-7 was added at 10 μmol/L where indicated. Fibrin-embedded cells were analyzed using a confocal microscope (Leica TCSSL) and images were processed with Adobe Photoshop. To quantify fibronectin matrix formation, fibrin-embedded cells were stained for fibronectin as described except that the cells were not permeabilized. Confocal images (×20) were analyzed for the percentage area of fibronectin staining using ImageJ software. ImageJ was also used to assess CLIC1 expression in invadopodia and the cell periphery, which were identified using F-actin staining. To this end, we measured the average CLIC1 fluorescence intensities in the cell periphery/invadopodia compared with the cell interior (without the nucleus) and calculated the ratio between the two compartments.

Gene silencing

HUVEC were grown for 24 hours before transfection with 25 nmol/L CLIC1 (Dharmacon On-TARGETplus SMARTpool L-009530-00) or nontargeting control (Dharmacon On-TARGETplus D-001810-10) siRNA. SMARTpool siRNA contains a pool of four siRNA sequences directed against the target gene. Cells were transfected in Opti-MEM medium (Invitrogen) using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. After 6 hours, cells were placed in normal culture medium and grown for an additional 42 hours. To achieve stable knockdown of CLIC1 and β3 integrin, we transduced 786-0 and HT1080 cells with five lentiviral shRNA vectors compared with a scrambled control shRNA (University of Pittsburgh Cancer Institute Vector Core Facility, Pittsburgh, PA). For our experiments, we used the two clones with the highest knockdown efficiency for each target. Subconfluent cells were treated with virus suspension containing 8 μg/mL polybrene for 19 hours at 32°C, 5% CO2. Then, after a recovery phase of 24 hours in complete medium at 37°C, cells were placed under puromycin selection for 2 weeks. Target knockdown was confirmed by Western blot analysis and the two most efficiently knocked down clones were selected for further experimentation (CLIC1-2: CCGGTCCTGTGCGCAAAGTTACACATTCGAGATGTGTAAGTGGGACAGTGTTT TTG; CLIC1-4: CCGGTTGATGAGAAACCAGTGCCGATGACGTCTGCAGCTGTTT CATCCACCTTTTGTC; β3-3: CCGGCCAGTCTCATCTCCCATCCGACGCTTGGGTGAAGATCAGCTGTGTTT; β3-5: CCGGGGATGGAGATGACGTCTGCAGCTGTTT).

Western blot analysis

Cell pellets were lysed by adding 2× SDS sample buffer. Proteins were separated by SDS-PAGE, transferred onto nitrocellulose, and stained with 0.05% Ponceau S (Sigma) to ensure equivalent protein loading. Immunoblots were blocked with 5% bovine serum albumin and probed overnight at 4°C with anti-CLIC1 (Abcam), anti-fibronectin (Millipore), anti-Slug (Cell Signaling Technology), anti-MLCK (Sigma), anti-phospho-MLCK (Life Technologies), anti-β3 (BD Biosciences), and anti-β-Actin (Sigma) antibodies followed by incubation with peroxidase-conjugated anti-mouse or rabbit IgG antibody (Bio-Rad). Finally, the
CLIC1 is upregulated in invadopodia of microscopy. This study revealed that CLIC1 expression was formation, we analyzed the subcellular localization of CLIC1 tumor and endothelial cells and lung metastasis in vitro cells depend on CLIC1 for invadopodia and colony formation these results show that necessary for efficient tumor cell seeding in the lungs. Together, these results show that fibronectin are involved in the invasion of blood clot (6, 7). To determine whether CLIC1 itself promotes clot invasion, we embedded CLIC1-depleted 786-0 kidney cancer and HT1080 fibrosarcoma cells in a 3D matrix of fibrin and scored clots for invadopodia-positive cells by phase contrast microscopy. Knockdown with CLIC1 siRNA (shCLIC1) compared with scrambled shRNA (shSCR) led to a marked decrease of CLIC1 protein expression in two independently isolated 786-0 and HT1080 clones, which translated into significant inhibition of invadopodia as well as colony formation, but had no effect on cell death in fibrin-embedded tumor cells (Fig. 1A–C and Supplementary Fig. S1). In addition, invadopodia formation was markedly reduced, when endothelial cells were treated with siRNA against CLIC1 (Fig. 1A and D and Supplementary Fig. S1). Treatment with IAA94, on the other hand, had no effect, suggesting that the role of CLIC1 in invadopodia formation is independent of its function as an ion channel. To determine whether CLIC1 is relevant for metastasis, we injected shCLIC1- and shSCR-HT1080 cells into the tail vein of athymic nude mice and analyzed lungs for tumor multiplicity 3 weeks later (Fig. 1E). Paralleling our in vitro results, we found that knockdown of CLIC1 significantly reduced experimental lung metastasis, suggesting that CLIC1-mediated functions are necessary for efficient tumor cell seeding in the lungs. Together, these results show that fibronectin expression and localization, we stained pattern (after 1 hour) and then in form of a solid, cortical (after 2 hours; Fig. 2A). From a largely cortical localization, CLIC1 shifted toward invadopodia, which developed in 786-0 within 1 hour and in HUVEC within 24 hours of embedding (Fig. 2A and B). After 24 hours, CLIC1 was almost exclusively localized in mature invadopodia of both HUVEC and 786-0, where it pronounced expression of CLIC1 at the cell membrane. These

Experimental metastasis

To induce metastasis, 5 × 10^5 HT1080 cells were injected into the tail vein (i.v.) of female, 6- to 8-week-old athymic nude mice (Charles Rivers). Three weeks after tumor cell injection, lungs were isolated and fixed in Bouin solution (Sigma). To assess tumor multiplicity, tumor nodules were counted on the surface of lungs using a stereo microscope (Zeiss Stemi 2000-C).

Statistical analysis

Significance was determined using the Student two-tailed t tests or one-way ANOVA followed by the posthoc Tukey multiple comparisons test (GraphPad Prism 5) with P < 0.05 considered significant. Error bars show mean ± SEM.

Results

CLIC1 supports invadopodia formation in fibrin in vitro and metastasis in vivo

We previously identified CLIC1 as a target for the antiangiogenic peptide CLT1 (9). This study implicated CLIC1 in regulating adhesive interactions between integrin αvβ3 and fibronectin, two adhesion proteins involved in the invasion of blood clot (6, 7). To determine whether CLIC1 itself promotes clot invasion, we embedded CLIC1-depleted 786-0 kidney cancer and HT1080 fibrosarcoma cells in a 3D matrix of fibrin and scored clots for invadopodia-positive cells by phase contrast microscopy. Knockdown with CLIC1 siRNA (shCLIC1) compared with scrambled shRNA (shSCR) led to a marked decrease of CLIC1 protein expression in two independently isolated 786-0 and HT1080 clones, which translated into significant inhibition of invadopodia as well as colony formation, but had no effect on cell death in fibrin-embedded tumor cells (Fig. 1A–C and Supplementary Fig. S1). In addition, invadopodia formation was markedly reduced, when endothelial cells were treated with siRNA against CLIC1 (Fig. 1A and D and Supplementary Fig. S1). Treatment with IAA94, on the other hand, had no effect, suggesting that the role of CLIC1 in invadopodia formation is independent of its function as an ion channel. To determine whether CLIC1 is relevant for metastasis, we injected shCLIC1- and shSCR-HT1080 cells into the tail vein of athymic nude mice and analyzed lungs for tumor multiplicity 3 weeks later (Fig. 1E). Paralleling our in vitro results, we found that knockdown of CLIC1 significantly reduced experimental lung metastasis, suggesting that CLIC1-mediated functions are necessary for efficient tumor cell seeding in the lungs. Together, these results show that fibronectin expression and localization, we stained pattern (after 1 hour) and then in form of a solid, cortical (after 2 hours; Fig. 2A). From a largely cortical localization, CLIC1 shifted toward invadopodia, which developed in 786-0 within 1 hour and in HUVEC within 24 hours of embedding (Fig. 2A and B). After 24 hours, CLIC1 was almost exclusively localized in mature invadopodia of both HUVEC and 786-0, where it pronounced expression of CLIC1 at the cell membrane. These

Figure 1.

CLIC1 supports invadopodia formation in vitro and metastasis in vivo. A–D, 786-0, HT1080, and endothelial cells (HUVEC) were analyzed for invadopodia formation 24 hours after embedding in a 3D fibrin matrix by phase contrast microscopy. A, representative images of fibrin-embedded HUVEC, 786-0, and HT1080 cells are shown (top, controls; bottom, CLIC1-knockdown cells). Scale bars, 50 μm. B–C, phase contrast microscopy images of fibrin clots were analyzed for percentage invadopodia-positive 786-0 and HT1080 cells (B) and overall cell count (C) per optical field after CLIC1 silencing with two CLIC1 shRNA vectors (shCLIC1-2 and 4) compared with scrambled shRNA (shSCR). D, invadopodia formation in fibrin-embedded HUVEC after transfection with CLIC1 siRNA (control, nontargeted siRNA) or after treatment with 200 μmol/L IAA94 (control, DMSO). E, the number of lung tumors (tumor multiplicity) was assessed 3 weeks after i.v. injection of 5 × 10^5 CLIC1 or SCR shRNA-transformed HT1080 cells. *P < 0.05; **P < 0.1; ***P < 0.001.

CLIC1 is upregulated in invadopodia of fibrin-embedded tumor and endothelial cells

To determine the function of CLIC1 for invadopodia formation, we analyzed the subcellular localization of CLIC1 in fibrin-embedded HUVEC and 786-0 cells by confocal microscopy. This study revealed that CLIC1 expression was concentrated around nascent invadopodia first in a punctate

www.aacrjournals.org Mol Cancer Res; 13(2) February 2015 275

Downloaded from mcr.aacrjournals.org on June 18, 2017. © 2015 American Association for Cancer Research.
results show that the localization of CLIC1 in invadopodia correlates with expression of β3 integrin. Moreover, they suggest that CLIC1 is highly enriched in invadopodia of metastatic tumor cells.

CLIC1 promotes tumor cell spreading through effects on myosin-light chain kinase

To establish a detailed account of the role of CLIC1 for tumor cell spreading, we performed live cell imaging with fibrin-embedded 786-0 cells. Video microscopy revealed that both 786-0-shCLIC1 and the control 786-0-shSCR cells were very similar in the early phase (0–8 hours), which is characterized by the formation of dynamic, rapidly extending and retracting invadopodia (Fig. 4A and B). Then, after 8 hours, control cells began to stabilize and further lengthen their invadopodia as a prerequisite for spreading. Invadopodia in CLIC1 knockdown cells, in contrast, did not gain much length after 8 hours and, instead, destabilized at an increasing rate leaving membrane fragments behind. Interestingly, a similar effect was achieved when we inhibited cell spreading with the myosin-light chain kinase (MLCK) inhibitor ML7. Although ML7 had no effect on the initial invadopodia outgrowth (i.e., within the first 24 hours), the inability of cells to generate stress fibers correlated with significantly reduced invadopodia stability and colony formation, indicating that MLCK generates important signals for proliferation in 3D fibrin (Fig. 5A and B). To follow up on these results, we analyzed CLIC1-dependent actomyosin dynamics by staining 48-hour fibrin-embedded 786-0 cells with an antibody against phosphorylated myosin light chain (MLC) as well as phalloidin. Using confocal microscopy, we found that CLIC1 knockdown significantly impaired the capacity of fibrin-embedded tumor cells to activate MLC and generate stress fibers (Fig. 5C and D).

Further upstream, we detected a marked reduction of phosphorylated and total MLCK in 786-0-shCLIC1 while RhoA activity remained unaffected (Fig. 5E and Supplementary Fig. S3A). Interestingly, MLCK was also reduced in 786-0-shβ3, suggesting that CLIC1 regulates MLC activity downstream of integrin αβ3 (Fig. 5E). Together, our results indicate that CLIC1 promotes tumor cell spreading through effects on MLCK.

Figure 2.
CLIC1 is upregulated in invadopodia of fibrin-embedded tumor and endothelial cells. A, confocal microscopy images of HUVEC or 786-0 cells embedded in fibrin clots for 1 or 2 hours after immunostaining with anti-CLIC1 (red). Nuclei are stained with draq5 (blue). B, confocal microscopy images of 24-hour fibrin-embedded HUVEC and 786-0 cells after immunostaining for β3 integrin (green) and CLIC1 (red). Nuclei are stained with draq5 (blue). C, fibrin-embedded 786-0 cells transformed with scrambled (shSCR, top) or β3 shRNA (shβ3, bottom) were fixed after indicated times and probed for CLIC1 (green) and F-actin (red). Nuclei are stained with draq5 (blue). Scale bars, 10 μm.

Figure 3.
CLIC1 is upregulated in invadopodia of metastatic RCC. A, primary kidney tumor cells from 2 patients with metastasis (M1/2) and 2 without metastasis (L1/2) were embedded in fibrin clots for 24 hours. In preparation for confocal microscopy, the fibrin-embedded cells were fixed and costained with anti-CLIC1 (green) and phalloidin (red). Scale bars, 20 μm. B, CLIC1 fluorescence intensity is depicted as a ratio of peripheral to interior CLIC1 in primary tumor cells from metastatic (M) and localized (L) kidney cancer to assess CLIC1 redistribution to invadopodia at indicated times. **, P < 0.01, L1 and 2 vs. M1 and P < 0.05, L1 and 2 vs. M2.
CLIC1 and MLCK are necessary for fibronectin matrix formation in 3D fibrin

Actin–myosin interactions are a prerequisite for fibronectin fibril formation (16). Therefore, we decided to assess the effect of CLIC1 on fibronectin matrix assembly. Staining for fibronectin and F-actin showed that fibrin-embedded 786-0-shSCR control cells begin to develop invadopodia within 15 minutes after embedding in fibrin and that this process was accompanied by the relocation of intracellular fibronectin toward the cortical cytoskeleton adjacent to the nascent invadopodia (Fig. 6A). Between 1 and 4 hours, fibronectin colocalized increasingly with invadopodia, while by 48 hours, a mature extracellular matrix was visible in areas where invadopodia have retracted. Notably, this process of fibronectin assembly was impaired in shCLIC1-transformed as well as tumor cells treated with the MLCK inhibitor ML-7 resulting in a significantly diminished fibronectin matrix after 48 hours of embedding in fibrin (Fig. 6A and B and Supplementary Fig. S3B). We previously showed that fibronectin matrix assembly is necessary to maintain expression of the EMT master regulator Slug (6). Paralleling these data, we detected reduced Slug expression in 786-0-shCLIC1 cells as well as in 786-0 cells treated with ML-7 (Fig. 6C). Together, these results indicate that both CLIC1 and MLCK are necessary for fibronectin matrix assembly and expression of the EMT master regulator Slug.

Discussion

We previously identified CLIC1 as an internalizing receptor for the antiangiogenic peptide CLT1 on proliferating endothelial cells (9). Here, we demonstrate that CLIC1 supports invadopodia stability and stress fiber formation in clot-embedded cells through effects on MLCK. This function was accompanied by relocation of CLIC1 into invadopodia, which, in turn, depended on the expression of β3 integrin. Through its effects on actomyosin, CLIC1 supports fibronectin matrix assembly as well as Slug expression and, therefore, mediates critical tumor cell functions such as fibrin invasion, colony formation, and lung metastasis.

CLIC1 was originally identified as a nuclear chloride channel protein (NCC27) in a macrophage cell line, but since its discovery CLIC1 expression has been detected in many different tissues (17, 18). Despite its ubiquitous expression, CLIC1 has regularly been shown to be upregulated in patients with malignant tumors of the brain, liver, lung, ovaries, and gastrointestinal tract and in many of these malignancies, CLIC1 expression correlates with aggressive disease and poor outcome (12, 19–22). In addition, CLIC1 has been shown to be overexpressed in the tumor vasculature, indicating that CLIC1 plays an important role in the different aspects of tumor growth and metastasis (10). In agreement with this, CLIC1 was found to be involved in cell migration, invasion, and proliferation but its function in these processes remains largely elusive (15, 23, 24). We previously demonstrated that tumor metastasis to the lungs correlates with the ability of tumor cells to generate invadopodia in clotted plasma and that this mechanism depends on integrin αβ3 and fibronectin (6, 7, 25). Here, we established that CLIC1 cooperates with integrin αβ3 and fibronectin to support invadopodia and colony formation in fibrin in vitro and that this function correlates with the capacity of CLIC1 to promote lung metastasis in vivo.

Our data indicate that CLIC1 controls invadopodia stability and cell spreading by regulating MLCK, which is known to mediate critical biologic functions such as cell division and motility (26, 27). In addition, MLCK has important effects on vesicular transport as well as cell contractility, which is required for the assembly of single fibronectin molecules into

www.aacrjournals.org Mol Cancer Res; 13(2) February 2015 277
fibrils (28, 29). The resulting fibronectin matrix, in turn, provides the necessary rigidity for cells to generate stress fibers in matrices as soft as fibrin (6, 30). Fibronectin has also been shown to contribute to MLC activity via syndecan-dependent stimulation of the RhoA–ROCK pathway (31). However, this mechanism did not seem to play a role in CLIC1 knockdown cells, which exhibit levels of activated, GTP-loaded RhoA comparable with cells treated with a control vector. Instead, it appears that CLIC1 supports tumor invasion, which mediates acidiﬁcation of phagosome (32). This function of CLIC1 is resembled by a close relative, CLIC4, which mediates acidiﬁcation of vacuoles in endothelial cells (34). However, it is important to note that CLIC4 has a number of additional functions, which do not seem to depend on anion currents, including the stabilization of phospho-smad2/3 as well as the p65 subunit of NFκB (35, 36). The interaction of CLIC4 with NF-κB in endothelial cells is signiﬁcant for pulmonary hypertension as it leads to activation of hypoxia-inducible factor-1α (HIF1α) and induction of an overall mesenchymal phenotype with invadopodia and stress ﬁbers (36). Another CLIC family member, CLIC3, in turn contributes to cell invasion through recycling of MT1-MMP and integrin α5β1 to the cell surface, suggesting that stabilizing proteins involved in cell–extracellular matrix interactions is a common theme of CLIC family members (37, 38). CLIC1 ﬁts neatly into this scheme as it functions to maintain MLCK expression, either directly or indirectly.

We have previously shown that interaction of a tumor homing peptide CT1 with CLIC1 and CLIC3 can cause endocytosis of ﬁbronectin–CLT1 complexes (9, 39). A prerequisite of CLIC1-mediated internalization was the ligation of integrin αvβ3 with ﬁbronectin, which caused CLIC1 cell surface expression (9). CLIC3-mediated internalization on the other hand depended on ligation of integrin α5β1 (39). Paralleling these data, our current study indicates that the process of relocating CLIC1 into invadopodia depends on β3 integrin. Interestingly, CLIC1 translocation into the cell membrane can be induced by NADPH oxidase, which, in turn, has been shown to be activated by the Rho GTPase Rac following integrin ligation (40, 41). Another key function of Rac is to mediate F-actin formation and, thus, to provide membrane binding sites for CLIC1 in invadopodia (42, 43). Notably, binding of CLIC1 to F-actin has been shown to inhibit CLIC1 chloride conductance, which is in agreement with our result that the CLIC1 channel blocker IA94 had no effect on invadopodia formation (42).

On the basis of our results, we propose a model where β3 integrin–mediated recruitment of CLIC1 into invadopodia promotes expression of MLCK in clot-embedded tumor and, presumably, endothelial cells. The resulting contraction of the actin cytoskeleton is necessary for the generation of stress ﬁbers as well as ﬁbronectin ﬁbrils in ﬁbronectin-embedded tumor cells and this, in turn, is a prerequisite for focal adhesion-dependent growth signaling (30, 44). Our previous results show that ﬁbronectin expression plays an important role in maintaining expression of the EMT transcription factor Slug, which, in turn, promotes ﬁbrin invasion and lung metastasis (6). In line with the concept that CLIC1 acts through stress ﬁber and ﬁbronectin matrix formation, we show now that clot colonization, Slug expression, and lung metastasis are impaired in CLIC1 knockdown cells. Moreover, antagonizing MLC function with the MLCK inhibitor ML-7 also impairs invadopodia stability, ﬁbronectin matrix assembly, and Slug expression, strongly suggesting that the role of CLIC1 in clot colonization and Slug expression is a direct result of CLIC1’s effect on MLCK. Together, this study indicates an important function of CLIC1 in the regulation of cell–extracellular matrix interactions, which have direct effects on the ability of circulating tumor cells to colonize clot in vitro and to metastasize to distant organs in vivo. Thus, strategies to inhibit CLIC1 could be useful for the treatment of aggressive cancer.

Figure 6. CLIC1 promotes fibronectin matrix formation in 3D fibrin. A, fibrin-embedded 786-O transformed with shSCR (top), shCLIC1 (middle), or treated with ML-7 (10 μmol/L; bottom) were ﬁxed after indicated times and probed for ﬁbronectin (green) and F-actin (red) using confocal microscopy. Nuclei are stained with draq5 (blue). Scale bars, 20 μm. B, ﬁbronectin matrix formation was assessed from nonpermeabilized 786-O cells embedded in ﬁbronectin using confocal microscopy. C, extracts from 786-O cells treated with CLIC1 shRNA or exposed to ML-7 for 48 hours were probed for Slug. Controls were treated with scrambled shRNA (SCR) or vehicle, respectively. β-Actin shows protein loading.

Gurski et al.
Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: L.A. Gurski, J. Pilch
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.A. Gurski, L.M. Knowles, P.H. Basse, J. Pilch
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Pilch
Writing, review, and/or revision of the manuscript: L.A. Gurski, L.M. Knowles, P.H. Basse, J.K. Maranchie, J. Pilch
Study supervision: J. Pilch

Acknowledgments
The authors thank Dr. Robert Sobol and Ashley Brown from the UPCI Vector Core Facility for constructing shRNA vectors. This project used the UPCI Cell and Tissue Imaging Facility, UPCI Animal Facility, and the UPCI Vector Core Facility, which are supported by the UPCI Cancer Center Support Grant.

Grant Support
This work was supported by the NIH grants CA134330 (to J. Pilch), ST32DK07774-14 (to L.A. Gurski), and P30CA07904 (UPCI CCGC).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 5, 2014; revised September 1, 2014; accepted September 3, 2014; published OnlineFirst September 9, 2014.

References
Relocation of CLIC1 Promotes Tumor Cell Invasion and Colonization of Fibrin

Lisa A. Gurski, Lynn M. Knowles, Per H. Basse, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-14-0249

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2014/09/10/1541-7786.MCR-14-0249.DC1

Cited articles
This article cites 44 articles, 21 of which you can access for free at:
http://mcr.aacrjournals.org/content/13/2/273.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/13/2/273.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.