Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53

Xinxin Song1, Ashok-Kumar Dilly1, Haroon Asif Choudry1, David L. Bartlett1, Yong Tae Kwon2, and Yong J. Lee1,3

Abstract

Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun N\textsubscript{H}\textsubscript{2}-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction.

Implications: The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation. Mol Cancer Res 13(12); 1533--43. ©2015 AACR.

Introduction

Peritoneal carcinomatosis is regarded as the most common lethal primary or secondary cancerous disease that affects the peritoneal cavity following colorectal cancer, appendiceal cancer, ovarian cancer, gastric cancer, or diffuse malignant peritoneal mesothelioma (1, 2). Colorectal peritoneal carcinomatosis (CPC), which affects approximately 10\% of colorectal cancer patients, is one manifestation of metastatic colorectal cancer (2, 3). Standard treatments involve cytoreductive surgery and perioperative chemotherapy (4). However, CPC is generally considered an untreatable condition that makes clinicians abandon further aggressive treatment, and the response rates of CPC patients are low (4). Physiologic stress from hypoxia, a feature of most tumors, has been associated with the resistance of CPC to therapy (5).

Bioreductive prodrugs have been designed to be activated under hypoxia and thus increase achievable therapeutic effects under hypoxic conditions. Some agents have also been developed to target hypoxic tumor cells through inhibition of hypoxia-inducible factor (HIF) 1, a master transcriptional regulator (6). The chemotherapeutic agent mitomycin C is a naturally occurring, clinically used, bioreductive alkylating prodrug that is activated by several enzymes, including cytochrome P450 reductase (7). Mitomycin C has also been shown to inhibit HIF-1\textalpha protein synthesis (8). It has been tested in a great number of preclinical and clinical studies and is widely used to treat peritoneal carcinomatosis (9). However, mitomycin C alone is not potent enough to generate sustained tumor regression and has been shown cause unexpected side effects (10, 11). Therefore, we should consider combinations of cytotoxic drugs and other agents that have achieved improvement in animal models and patients (12--18), thereby enhancing the likelihood of survival for CPC patients.

The ubiquitin–proteasome pathway has been well recognized as a valid target for antitumor therapy and is also regarded as a biomarker of poor prognosis for peritoneal mesothelioma tumors (15). Bortezomib, an approved-for-clinical-use proteasome inhibitor used to treat multiple myeloma, induces apoptosis in a wide variety of cancer cell lines, yet has relatively few toxic effects on normal cells (16--18). However, bortezomib has minimal activity as a single agent in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal...
cancer, indicating that proteasome inhibitors should be combined with other reagents to increase the effectiveness of therapy (19, 20).

In this study, we observed that the combination of the chemotherapeutic agent mitomycin C and the proteasome inhibitor bortezomib in sublethal doses induced synergistic cytotoxicity and apoptosis, in particular under hypoxia in vitro and in vivo. The combination of mitomycin C and bortezomib induced oligomerization of Bcl-2 homologous antagonist/killer (Bak) through coordinated action of Bcl-xL dissociation from Bak and p53 mitochondrial localization and resulted in mitochondria-dependent apoptotic cell death. The significance of our findings promotes the opportunity to incorporate bortezomib with mitomycin C to preferentially target not only normoxic, but also hypoxic tumor cells, allowing for more effective therapy for CPC patients.

Materials and Methods

Cell cultures and transfection

Human colorectal carcinoma CX-1 cells, which were obtained from Dr. J.M. Jessup (Division of Cancer Treatment and Diagnostics, NCI, NIH, Bethesda, MD), were cultured in RPMI-1640 medium containing 10% FBS. Human colorectal carcinoma HCT116 cells, kindly provided by Dr. B. Vogelstein (Johns Hopkins University, Baltimore, MD), were cultured in McCoy’s 5A medium containing 10% FBS. LS174T and LS180 are human colon adenocarcinoma cell lines and were purchased from ATCC and cultured in Eagle's minimum essential medium and 10% FBS at 37°C and 5% CO₂. Mycoplasma testing was conducted routinely for all cell lines. For transient transfection, cells were transfected with Lipofectamine 2000 (Life Technologies) and were treated 48 hours after transfection.

Hypoxic treatment

Hypoxic cell culture experiments were carried out at 1% O₂ using a hypoxia chamber (Anaerobic System model 1025/1029, ThermoForma).

Reagents and antibodies

Mitomycin C was obtained from Santa Cruz Biotechnology. Bortezomib was obtained from Millennium Pharmaceuticals. Anti-hemagglutinin (HA), anti-Bcl-xL, anti-carcinoembryonic antigen (CEA), anti-phospho-c-Jun NH₂-terminal kinase (JNK), anti-JNK, anti-Bak, anti-caspase-8, anti-caspase-9, anti-caspase-3, anti-Bad, anti-p-p53(Ser46)/p53, anti-COX IV antibody, and anti-JNK, anti-Bak, anti-caspase-8, anti-caspase-9, anti-caspase-3, anti-Bad, anti-p-p53(Ser46)/p53, anti-COX IV antibody, and anti-PARP antibody came from Cell Signaling Technology. Anti-actin antibody came from Sigma-Aldrich. Anti-p-Bcl-xL (S62) antibody was obtained from Millipore. Anti-cytochrome c antibody came from BD Pharmingen. Anti-Ki67 antibody was used to quantify cell proliferation.

MTS assays

MTS studies were carried out using the Promega CellTiter 96 AQueso One Solution Cell Proliferation Assay (Promega). Cells were then treated with MTS phenazine methosulfate solution for 1 hour at 37°C. Absorbance at 490 nm was determined using an ELISA plate reader.

Annexin V binding

Cells were harvested with trypsinization, washed with serum-free medium, and suspended in binding buffer [annexin V-fluorescein isothiocyanate (FITC) Staining Kit, BD Pharmingen]. This cell suspension was stained with FITC-conjugated annexin V and propidium iodide (PI) and then immediately analyzed using flow cytometry.

Combination index analysis

Combination index (CI) was calculated using the CompuSyn software (ComboSyn, Inc.). On the basis of CI values, the extent of synergism/antagonism was determined. In general, CI values below 1 suggest synergy, whereas CI values above 1 indicate antagonism between the drugs. CI values in the range of 0.9 to 1.10 range mainly indicate additive effects, those between 0.9 and 0.85 suggest slight synergy, those in the range of 0.7 and 0.3 indicate moderate synergy, and those less than 0.3 suggest strong synergy.

Immunoblot analysis

Cells were lysed with Laemmli lysis buffer and boiled for 10 minutes. Protein content was measured with BCA Protein Assay Reagent (Thermo Scientific), separated by SDS-PAGE, and electrophoretically transferred to nitrocellulose membrane. The nitrocellulose membrane was blocked with 5% nonfat dry milk in PBS-Tween-20 (0.1%, v/v) for 1 hour and incubated with primary antibody at room temperature for 2 hours. Horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG was used as the secondary antibody. Immunoreactive protein was visualized using the chemiluminescence protocol. Gel densitometry was analyzed using the software Gel-pro application from Media Cybernetics.

Immunoprecipitation

Briefly, cells were lysed in CHAPS lysis buffer with protease inhibitor cocktail (Calbiochem). A total of 0.5-1 mg of lysate was incubated with 1.5 μg of anti-Bak/HA antibody or rabbit IgG (Santa Cruz Biotechnology) at 4°C overnight, followed by the addition of protein G PLUS-agarose beads (Santa Cruz Biotechnology) and rotation at room temperature for 2 hours followed by immunoblot analysis.

Bak oligomerization

Cells were pelleted and resuspended in Hoechst buffer. The cell suspension was homogenized, and spun at 1,000 x g for 15 minutes at 4°C. The supernatant was transferred and spun at 10,000 x g for 15 minutes at 4°C to pellet mitochondria. Aliquots of isolated mitochondrial fractions and cytosolic fractions were cross-linked with 1 mmol/L dithiobis (Pierce). Samples were subjected to SDS-PAGE under nondenaturing conditions followed by immunoblotting for Bak.

Confocal microscopy

Cells were stained with 300 nmol/L MitoTracker (Life Technologies). Cells were washed three times with 0.5% bovine serum albumin in PBS, followed by fixation in 4% paraformaldehyde for 15 minutes. Bak was stained with anti-Bak antibody. Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Cell Signaling Technology). Slides were mounted and visualized in 0.4 μm sections using an Olympus Fluoview 1000 confocal microscope and the companion software FV10-ASW2.1 under a 63X oil immersion objective.
Measurement of cytochrome c release
To determine the release of cytochrome c from the mitochondria, mitochondrial and cytosolic fractions were prepared using the Mitochondrial Fractionation Kit (Active Motif) following company instructions and reagents included in the kit. Cytosolic fractions were subjected to SDS-PAGE and analyzed with immunoblotting using anti-cytochrome c antibody.

Knockdown of p53 with siRNA oligomers
Cells were transfected with 50 nmol/L of p53 siRNA and control siRNA from Sigma Aldrich, using Lipofectamine 2000. Target sequences for preparing siRNAs of human p53 were as follows: 5'-GAC UCC AGU GGU AAAU CUA C-3' (sense strand) and 5'-GUA GAU UAC CAC UGG AGU C-3' (complement strand). Expression levels were determined by immunoblot analysis.

Animal model
Nude mice (6-week-old, Taconic) were intraperitoneally (i.p.) challenged with 5 × 10^5 LS174T cells expressing firefly luciferase, which was stably transduced by lentiviral transfection of the pGL4 Luciferase Reporter Vector (Promega) and selected with puromycin. The luciferase signal was monitored by injecting the luciferase substrate luciferin (150 mg/kg, i.p.; GoldBio) 5 minutes after anesthesia with 2% isoflurane prior to imaging on an IVIS200 system (Perkin Elmer). Bioluminescence signal was quantified using the LivingImage software (Perkin Elmer). Mice were examined for bioluminescent signals, indicating basal tumor loading. Mice with the same bioluminescence levels were divided into four groups (five per group) and subjected to different treatments, including control, bortezomib (0.5 mg/kg, i.p.) alone, mitomycin C (1.5 mg/kg, i.p.) alone, or bortezomib and mitomycin C in combination. Each group of mice was treated every other day. The tumor load, represented by bioluminescence levels, was determined by bioluminescent signal. Mice were killed in accordance with the Guide for the Care and Use of Laboratory Animals.

Immunohistochemical staining and immunofluorescent analysis
For immunohistochemical staining, tumor tissues recovered from each group were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections were cut 4 μm thick and then were stained either via standard hematoxylin and eosin (H&E) staining or immunohistochemical staining with mAbs specific for human CEA and Ki67 and were visualized with the Envision plus dual link system (Dako) following the manufacturer's instructions. Pimonidazole (60 mg/kg; Hypoxyprobe, Inc.) was administered 60 minutes intraperitoneally prior to sacrifice of the mice. For quantification of hypoxic tumor cell apoptosis via immunofluorescence, tumors were fixed in 4% paraformaldehyde, 30% sucrose overnight, and then frozen in optimum cutting temperature (OCT) and cryosectioned. Sections were incubated with anti-cleaved caspase-3 antibody and mouse anti-pimonidazole Dylight549-Mab, and then incubated with anti-Rabbit Alexa Fluor 488. The percentage of cleaved caspase-3-positive cells was quantified by counting at least 300 cells for each sample and plotted as mean ± SD of two independent experiments.

Results
The combination of mitomycin C and bortezomib induced synergistic cytotoxicity and apoptosis in normoxia and hypoxia
First, we investigated the effect of mitomycin C and bortezomib at different doses on human colorectal HCT116, Cx-1, and LS174T cancer cells. We observed that the hallmark feature of apoptosis, PARP cleavage, significantly increased with the combination treatment of mitomycin C and bortezomib in a dose-dependent manner in all tested cell lines (Fig. 1A). We then tested the cytotoxicity of the combination of mitomycin C and bortezomib in LS174T cells under both normoxic (21% O2) and hypoxic (1% O2) conditions using MTS assay. As shown in Fig. 1B, mitomycin C induced 17.1% ± 2.1% cell death under normoxia. Interestingly, mitomycin C induced 29.1% ± 3.4% cell death under hypoxia (P < 0.05). Bortezomib at 10 nmol/L barely induced cell death under normoxia as well as hypoxia. Notably, bortezomib enhanced the effect of mitomycin C under both normoxia and hypoxia. To clarify whether the cytotoxicity of the combination of mitomycin C and bortezomib was associated with apoptosis, flow cytometry assay Annexin/PI was performed. We observed that the combination of mitomycin C and bortezomib induced greater apoptotic cell death (annexin V+ PI-) than any single drug treatment under both normoxia and hypoxia (Fig. 1C). We also analyzed the synergistic effect of the combination of mitomycin C and bortezomib under hypoxic conditions using CI as shown in Table 1. CI values were less than 0.7 or 0.3 for the indicated doses of each drug under hypoxia, indicating moderate synergy or strong synergy.

The combination of mitomycin C and bortezomib induced activation of caspasas, Bcl-xl phosphorylation, and p53 elevation under normoxia as well as hypoxia
Next, we examined whether the combination of mitomycin C and bortezomib promoted the caspase pathways under normoxia and hypoxia in human colorectal LS174T and LS180 cancer cells. It is well known that the intracellular level of hypoxia-inducible factor-1α (HIF-1α) is elevated under hypoxia due to inhibition of degradation (21–23). Indeed, data from immunoblot analysis demonstrated an elevation of HIF1α under hypoxia in LS174T cells (inset of Fig. 2A). We also observed that 2 μg/mL mitomycin C or 10 nmol/L bortezomib alone had no significant apoptotic effect under normoxia (main of Fig. 2A), but the combination of
mitomycin C and bortezomib resulted in significant activation of caspase-8, 9, and 3, as well as PARP cleavage. Interestingly, mitomycin C alone under hypoxia-induced activation of caspases and PARP cleavage, while the activation and cleavage from the combination of mitomycin C and bortezomib was greatly increased. Similar results were obtained in LS180 cells (Fig. 2C).

To confirm the differential effect of mitomycin C under normoxia and hypoxia, LS174T cells were treated with various doses of mitomycin C. As shown in Fig. 2B, the effect of mitomycin C was significantly increased under hypoxia compared with that under normoxia, especially in low doses.

We next investigated the apoptotic death-related MAPK signaling pathways during treatment with combination of mitomycin C and bortezomib under normoxia and hypoxia (Figs. 3A and B). We observed phosphorylation (activation) of JNK as well as p38 along with Bcl-xL phosphorylation during treatment with the combination of mitomycin C and bortezomib, especially under hypoxic conditions in LS174T and LS180 cells. We also observed p53 elevation with mitomycin C treatment regardless of oxygen tensions in LS174T and LS180 cells. It is reported that activated p38 can phosphorylate p53 at Ser46 and phosphorylated p53 (p-p53) localizes to the mitochondria (24–27). Thus, we examined p-p53 (Ser46) and observed an increase in the level of p-p53 during treatment with mitomycin C, in particular under hypoxia, in both LS174T and LS180 cells (Figs. 3A and B).

Table 1. CI for the combination of mitomycin C and bortezomib under hypoxia (1% O2) was calculated using the CompuSyn software for LS174T and LS180 cancer cells

<table>
<thead>
<tr>
<th>Combination therapy</th>
<th>LS174T</th>
<th>LS180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitomycin C (µg/mL)</td>
<td>Bortezomib (nmol/L)</td>
<td>CI</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.24b</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.41c</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.41c</td>
</tr>
</tbody>
</table>

aSlight synergy.
bStrong synergy.
cModerate synergy.
Role of MAPK in Bcl-xL phosphorylation during treatment with mitomycin C and bortezomib under normoxia and hypoxia

Several researchers have reported that MAPK plays a critical role in the death receptor–initiated extrinsic as well as the mitochondrial intrinsic apoptotic pathways (28, 29). Pretreatment of SB203580, a p38 inhibitor, or SP600125, a JNK inhibitor, attenuated the drug combination–induced PARP cleavage and decreased Bcl-xL phosphorylation in both normoxic and hypoxic culture systems (Fig. 4A). These results suggest that activation of p38 and JNK plays a role in the drug combination treatment–induced apoptosis through phosphorylation of Bcl-xL. Our previous studies demonstrated that stress-induced Bcl-xL phosphorylation occurs on serine 62 (S62) residue (30). We next examined the role of Bcl-xL phosphorylation at S62 in the synergistic effect of mitomycin C- and bortezomib-induced apoptosis.

To further study the role of Bcl-xL phosphorylation at S62 in the synergistic effect of mitomycin C- and bortezomib-induced apoptosis, we examined the interaction between Bak and Bcl-xL during treatment with mitomycin C and bortezomib. Bcl-xL-WT and Bcl-xL-S62A transient transfected cells were employed and immunoprecipitation assay was conducted. Figure 4C shows that Bcl-xL WT dissociated from Bak during combined treatment with mitomycin C and bortezomib under both normoxia and hypoxia, whereas Bcl-xL-S62A still maintained the interaction with Bak during combined treatment with mitomycin C and bortezomib under both normoxia and hypoxia. These results suggest that phosphorylation of Bcl-xL at S62 leads to apoptosis through dissociation of Bcl-xL from Bak.

Role of p53 in synergistic apoptotic effects of mitomycin C in combination with bortezomib under normoxia and hypoxia

We then further investigated the role of p53 in apoptotic death during treatment with mitomycin C and bortezomib under normoxia and hypoxia. As shown in Fig. 5A, we observed that p53 knockdown abrogated the combinatorial treatment-induced...
PARP cleavage under both normoxia and hypoxia, suggesting the proapoptotic function of p53. In Fig. 5B, we also observed that p53 translocated to the mitochondria during treatment with mitomycin C under normoxia, and this effect was enhanced under hypoxia probably due to p53 phosphorylation at Ser46 (Figs. 3A and B). There is no difference in terms of p53 translocation during bortezomib treatment under normoxia compared with that under hypoxia. Consistently, cellular cytochrome c release from the mitochondria to the cytosol increased in the combinatorial treatment under hypoxia. In Fig. 5B, we also observed that p53 translocated to the mitochondria during treatment with mitomycin C and bortezomib, especially under hypoxia (Fig. 5E). Confocal assay also shows Bak clustering localized in the mitochondria during treatment with mitomycin C and bortezomib, especially in the combinatorial treatment (Fig. 6C). In particular, the combinatorial treatment had more cleaved caspase-3 staining under hypoxia than under normoxia. Actin was used to confirm equal amounts of proteins loaded in each lane.

Next, we investigated the role of mitochondrial translocated p53. As shown in Fig. 5D, in the LS174T cell line, p53 bound to Bak during the combinatorial treatment of mitomycin C and bortezomib. Binding affinity increased during treatment with mitomycin C alone or the combinatorial treatment under hypoxia. We also observed the dissociation of Bak-XL from Bak during the bortezomib treatment as well as during the combinatorial treatment, especially under hypoxia, which was due to Bcl-XL phosphorylation. Similar results were obtained in the LS180 cell line. Mitomycin C alone caused a statistically significant decrease of tumor growth compared with the control group (P < 0.01). Mitomycin C alone caused a statistically significant decrease of tumor growth compared with single treatment (P < 0.01). Notably, we also observed that mitomycin C and the combinatorial treatment had more cleaved caspase-3 staining under hypoxia (P < 0.05). In Fig. 6F, schematic diagram that explains how the combinatorial treatment with mitomycin C and bortezomib effectively induced apoptosis under hypoxia through Bak activation (oligomerization), Bcl-XL dissociation (Bcl-XL phosphorylation) and p53 translocation to the mitochondria.

Discussion

Malignant tumors contain hypoxic regions due to insufficient blood supply and can adapt and survive under hypoxic conditions with increased survival signaling and loss of apoptotic potential (33). Given the central role of hypoxia in tumor progression and resistance to therapy, it is worth exploiting validated treatments for targeting hypoxia for therapy of CPC. In this study, we observed that a combinatorial treatment with the bioreductive prodrug mitomycin C and the proteasome inhibitor bortezomib synergistically induced apoptosis in colorectal cancer cells and the peritoneal animal model under both normoxic and hypoxic conditions.
conditions, and we also investigated the underlying mechanisms of mitomycin C- and bortezomib-induced apoptosis under hypoxia.

There are two main approaches for targeting hypoxia: bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. Prodrugs include five different chemical moieties (nitro groups, quinones, aromatic N-oxides, aliphatic N-oxides, and transition metals), which have the potential to be metabolized by enzymatic reduction under hypoxic conditions (7). The quinone mitomycin C is preferentially activated in hypoxic tumor cells (34). However, the detailed mechanisms of how mitomycin C selectively induces the apoptotic death of hypoxic colorectal cancer cells have been poorly studied. In this study, we observed that p53 preferentially translocated to the mitochondria under hypoxia during treatment with mitomycin C (Fig. 5C).

The tumor suppressor gene p53 has multiple functions, including cell-cycle regulation, DNA repair, and apoptosis. p53-associated apoptotic regulation can be achieved in a transcription-dependent or -independent manner. Death signals have been reported to be able to induce p53 translocation to the mitochondria via the transcription-independent apoptotic signal (35–38). p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization, regardless of several common mutations (39–41). In the current studies, we observed that for mitomycin C, the combinatorial treatment, as well as hypoxic conditions, induced translocation of p53 protein to the mitochondria, while the application of bortezomib had a limited effect on p53 elevation and mitochondrial translocation. Recently, some novel molecules, such as Tid1 (42), anionic phospholipids (36), dynamin-related protein 1 (43), DJ-1 (44), etc., have been reported to regulate the function of p53 translocation to the mitochondria. The possible involvement of these molecules in the mitochondrial translocation of p53 during treatment with mitomycin C and bortezomib, especially under hypoxia, needs to be elucidated in the near future.

It is obvious that mitomycin C alone is not enough to trigger sustained apoptosis, even with the dramatic translocation of p53 to the mitochondria upon hypoxia, which strongly indicates that a combination of other drugs is needed to induce robust apoptosis.

We previously reported that Bcl-xL, a key antiapoptotic molecule, undergoes phosphorylation in several different treatments...
Figure 5.
Role of p53 in the combinatorial treatment with mitomycin C and bortezomib under normoxia and hypoxia. A, LS174T cells were transfected with control siRNA or p53 siRNA for 48 hours and the level of p53 was detected by immunoblotting (inset). After 48-hour transfection, cells were treated with mitomycin C (2 μg/mL) and/or bortezomib (10 nmol/L) under normoxia and hypoxia for 24 hours (main). PARP was detected with immunoblotting. The levels of p53 were detected by immunoblotting 72 hours after transfection. Actin was used as a loading control. B, LS174T cells were treated with mitomycin C (2 μg/mL) and/or bortezomib (10 nmol/L) under normoxia and hypoxia for 24 hours. After treatment, cytosolic and mitochondrial fractions were isolated and p53 was detected in mitochondrial fractions with immunoblotting. The results of the COX IV analysis are shown as an internal mitochondrial control. Actin was used as an internal cytosol control. C, after treatment, mitochondria were stained with MitoTracker. p53 was stained with anti-p53 antibody. Localization of p53 was examined by confocal microscope. Scale bar 15 μm. D, LS174T cells and LS180 cells were treated with mitomycin C (2 μg/mL) and/or bortezomib (10 nmol/L) under normoxia and hypoxia for 24 hours. After treatment, cell lysates were immunoprecipitated with anti-Bak antibody or IgG and immunoblotted with anti-p53 and anti-Bcl-xL antibody. The presence of Bak, p53 and Bcl-xL in the lysates was examined. E, LS174T cells were treated with mitomycin C (5 μg/mL) and/or bortezomib (10 nmol/L) in normoxia and hypoxia for 24 hours. After treatment, mitochondria were isolated, cross-linked with 1 mmol/L dithiobis (succinimidyl propionate) and subjected to immunoblotting with anti-Bak antibody. Bak monomer (1×) and multimers (2× and 4×) are indicated. COX IV was used as a mitochondrial marker. F, after treatment, mitochondria were stained with MitoTracker. Bak was stained with anti-Bak antibody. Localization of Bak was examined under confocal microscope. Scale bar, 15 μm.
We report here that activation of p38 and JNK are both specifically required for the combinatorial treatment with mitomycin C and bortezomib, which is in agreement with other observations (28, 47). The fact that a validated phospho-defective Bcl-xL mutant was resistant to the combinatorial treatment of oxaliplatin and bortezomib-induced apoptosis and retained the interaction between Bak and Bcl-xL, indicated that Bcl-xL phosphorylation at Ser 62 is a key regulatory mechanism for

Figure 6.
Effect of mitomycin C and bortezomib on the growth of LS174T intraperitoneal tumors. A, nude mice were intraperitoneally inoculated with \(5 \times 10^5\) LS174T-luc cells/mouse on day 0. Four days after tumor inoculation, all the tumor-bearing mice were treated with either PBS alone (sham) or bortezomib alone at a dose of (0.25 mg/kg body weight) or mitomycin C alone or the combination of mitomycin C and bortezomib every other day from day 4 to day 28. Mice were imaged using the IVIS Imaging System Series 200. ***, statistically significant difference \((P < 0.01)\) compared with the control group; ###, statistically significant difference \((P < 0.001)\) compared with the single treatment group. B, line graph illustrating the luciferase activity (photons/second) in LS174T tumor-bearing mice treated with PBS alone, bortezomib alone, mitomycin C alone, or the combination from week 1 to week 5. C, tumor tissues were harvested at week 5 and subjected to H&E staining and immunohistochemistry staining with anti-CEA and ki67 primary antibodies. Representative images are shown (magnification, \(400\)). Scale bar 50 \(\mu m\). D, animals were sacrificed 1 hour after pimonidazole injection (i.p.). Tissue was stained for cleaved caspase-3 (green) and pimonidazole adducts (red). Cell nuclei were stained with DAPI. Representative images are shown (magnification, \(200\)). Scale bar 100 \(\mu m\). Quantification was performed with Photoshop software; hypoxic region was determined by the yellow shape (a); cleaved caspase-3-positive cells were quantified (b); cell nuclei were quantified (c). E, cleaved caspase-3-positive cells in normoxic and hypoxic areas were quantified. *, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\). F, a schematic diagram of the mechanism of the combinatorial treatment with mitomycin C and bortezomib-induced apoptosis under hypoxia.

(30, 45, 46). We report here that activation of p38 and JNK are both specifically required for the combinatorial treatment with mitomycin C and bortezomib, which is in agreement with other observations (28, 47). The fact that a validated phospho-defective Bcl-xL mutant was resistant to the combinatorial treatment of oxaliplatin and bortezomib-induced apoptosis and retained the interaction between Bak and Bcl-xL, indicated that Bcl-xL phosphorylation at Ser 62 is a key regulatory mechanism for
antagonizing antiapoptotic function in the combinatorial treatment. Thus, the mode of action of the DNA-damaging drug mitomycin C and proteasome inhibitor bortezomib is mediated via p53 mitochondrial translocation and phosphorylation of Bcl-xL, which results in facilitating the disruption of the mitochondrial apoptosis effector Bak. Our results support a concept that coordinated cell-intrinsic death signals enhances in robust apoptosis.

Taken together, we presented here a novel combinatorial treatment with the chemotherapeutic agent mitomycin C and the proteasome inhibitor bortezomib, which induced synergistic apoptosis under both normoxic and hypoxic conditions through p53 translocation to the mitochondria and Bcl-xL phosphorylation, and further disruption of the mitochondrial apoptosis effector Bak. Mitomycin C and bortezomib are both commonly used drugs that are approved by the FDA and could be considered for CPC patients in clinics in the near future.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: X. Song, Y.T. Kwon, Y.J. Lee
Development of methodology: Y.T. Kwon, Y.J. Lee

References
8. Lou JJ, Chua YL, Chew EH, Gao J, Bushell M, Hagen T. Inhibition of apoptosis under both normoxic and hypoxic conditions through enhancement of robust apoptosis.
32. Carethers JM, Pham TT. Mutations of transforming growth factor beta 1 type II receptor, BAX, and insulin-like growth factor II receptor genes in microsatellite unstable cell lines. In Vivo 2000;14:13–20.
Molecular Cancer Research

Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53

Xinxin Song, Ashok-Kumar Dilly, Haroon Asif Choudry, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-15-0237

Cited articles
This article cites 47 articles, 16 of which you can access for free at:
http://mcr.aacrjournals.org/content/13/12/1533.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.