Highlights of This Issue

REVIEW

1445 Maximizing the Therapeutic Potential of HSP90 Inhibitors
Lisa M. Butler, Roberta Ferraldeschi, Heather K. Armstrong, Margaret M. Centenera, and Paul Workman

COMMENTARY

1452 IMPlcating Mesenchymal Imp1 in Colitis-Associated Cancer
Ekaterina K. Kolosova and Sergei I. Grivennikov

CHROMATIN, GENE, AND RNA REGULATION

1455 Association of HO-1 and BRCA1 Is Critical for the Maintenance of Cellular Homeostasis in Prostate Cancer
Estefanía Labanca, Paola De Luca, Geraldine Gueron, Alejandra Paez, Cristian P. Moiola, Cintia Massillo, Juliana Porrett, Jimena Giudice, Florencia Zalazar, Nora Navone, Elba Vazquez, and Adriana De Siervi

DNA DAMAGE AND REPAIR

1465 Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors

ONCOGENES AND TUMOR SUPPRESSORS

1478 Loss of Stromal IMP1 Promotes a Tumorigenic Microenvironment in the Colon
Kathryn E. Hamilton, Priya Chatterji, Emma T. Lundsmith, Sarah F. Andres, Veronique Giroux, Philip D. Hicks, Felicite K. Noubissi, Vladimir S. Spiegelman, and Anil K. Rustgi

1487 Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes
Tor Espen Thorvaldsen, Nina Marie Pedersen, Eeva M. Wenzel, Sebastian W. Schulte, Andreas Brech, Knut Liestøl, Jo Waaler, Stefan Krauss, and Harald Stenmark

1502 IL6 Mediates Immune and Colorectal Cancer Cell Cross-talk via miR-21 and miR-29b
Saroor A.A. Patel and Nigel J. Gooderham

SIGNAL TRANSDUCTION

1509 Calcipotriol Targets LRP6 to Inhibit Wnt Signaling in Pancreatic Cancer
Michael D. Arensman, Phillip Nguyen, Kathleen M. Kernshaw, Anna R. Lay, Claire A. Ostertag-Hill, Mara H. Sherman, Michael Downes, Christopher Liddle, Ronald M. Evans, and David W. Dawson

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Tankyrase inhibitors, which are potential therapeutics in WNT-dependent cancers, induce cytoplasmic puncta (degradasomes) consisting of components of the signal-limiting WNT/β-catenin destruction complex. 3D structured illumination microscopy of SW480 colon carcinoma cells reveals an irregular shape of the induced degradasomes and a non-homogeneous distribution of tankyrase (green), β-catenin (white) and AXIN2 (red) in subdomains. Nuclei are in blue. Thorvaldsen and colleagues (p. 1487), demonstrate that β-catenin is rapidly turned over in degradasomes upon tankyrase inhibition and provide a direct mechanistic link between degradasome formation and reduced WNT signaling in colon carcinoma cells.
Molecular Cancer Research

13 (11)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://mcr.aacrjournals.org/content/13/11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>