Highlights of This Issue 965

REVIEW

967 Tailoring Peptidomimetics for Targeting Protein–Protein Interactions

CELL CYCLE AND SENESCENCE

979 Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis
Roch-Philippe Charles, Jillian Silva, Gioia Iezza, Wayne A. Phillips, and Martin McMahon

CELL DEATH AND SURVIVAL

987 PI3K and Bcl-2 Inhibition Primes Glioblastoma Cells to Apoptosis through Downregulation of Mcl-1 and Phospho-BAD
Fresia Pareja, David Macleod, Chang Shu, John F. Crary, Peter D. Canoll, Alonzo H. Ross, and Markus D. Siegelin

CHROMATIN, GENE, AND RNA REGULATION

1002 Differential Expression of Stress and Immune Response Pathway Transcripts and miRNAs in Normal Human Endothelial Cells Subjected to Fractionated or Single-Dose Radiation

DNA DAMAGE AND REPAIR

1016 Hypoxic Stress Facilitates Acute Activation and Chronic Downregulation of Fanconi Anemia Proteins
Susan E. Scanlon and Peter M. Glazer

GENOMICS

1029 Transcriptomes and shRNA Suppressors in a TP53 Allele–Specific Model of Early-Onset Colon Cancer in African Americans
Charles C. Weige, Marc R. Birtwistle, Himel Mallick, Nengjun Yi, Zuzana Berrong, Emily Cloessner, Keely Duff, Josephine Tidwell, Megan Clendenning, Brent Wilkerson, Christopher Farrell, Fred Bunz, Hao Ji, Michael Shuttman, Kim E. Creek, Carolyn E. Banister, and Phillip J. Buckhaults

ONCOGENES AND TUMOR SUPPRESSORS

1042 FGFR3 Translocations in Bladder Cancer: Differential Sensitivity to HSP90 Inhibition Based on Drug Metabolism
Jaime Acquaviva, Suqin He, Chaohua Zhang, John-Paul Jimenez, Masazumi Nagai, Jim Sang, Manuel Sequeira, Donald L. Smith, Luisa Shin Ogawa, Takayo Inoue, Noriaki Tatsuta, Margaret A. Knowles, Richard C. Bates, and David A. Proia

SIGNAL TRANSDUCTION

1055 Evaluating TBK1 as a Therapeutic Target in Cancers with Activated IRF3

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Immunofluorescence picture (200×) of a murine papillary thyroid carcinoma stained for galectin-3 (green) and DAPI (blue). This mouse model, developed in the McMahon Lab at the University of California, San Francisco by R.-P. Charles using the cre-activable gene Braf^{ca} mutant mouse coupled with a thyroid-specific cre-recombinase (Thyro-cre^{ERT2}), mimics closely the human pathology (e.g., galectin-3 expression). This preclinical model is invaluable for further studies using pathway-targeted drug treatments but also for uncovering the genetics behind tumor progression to anaplastic thyroid carcinoma by combining additional genomic alterations like Pik3ca^{H1074R} or Pten deletion. See the article by Charles and colleagues (beginning on page 979) for more information.