Table of Contents

Highlights of This Issue 295

REVIEW

- **297** Insidious Changes in Stromal Matrix Fuel Cancer Progression
 Fayth L. Miles and Robert A. Sikes

CELL CYCLE AND SENESCENCE

- **313** miR-338-3p Suppresses Gastric Cancer Progression through a PTEN-AKT Axis by Targeting P-REX2a
 Bo Guo, Liying Liu, Jiayi Yao, Ruili Ma,
 Dongmin Chang, Zongfang Li, Tusheng Song, and Chen Huang

- **322** PAI-1 Leads to G1-Phase Cell-Cycle Progression through Cyclin D3/cdk4/6 Upregulation
 Evan Gomes Giacoia, Makito Miyake,
 Adrienne Lawton, Steve Goodison, and Charles J. Rosser

CELL DEATH AND SURVIVAL

- **335** Knockdown of CABYR-a/b Increases Chemosensitivity of Human Non–Small Cell Lung Cancer Cells through Inactivation of Akt
 Zunlei Qian, Min Li, Rui Wang, Qiangian Xiao,
 Jing Wang, Mingyin Li, Dacheng He, and Xueyuan Xiao

- **348** T-Type Ca$^{2+}$ Channel Inhibition Induces p53-Dependent Cell Growth Arrest and Apoptosis through Activation of p38-MAPK in Colon Cancer Cells
 Barbara Dziegielewksa, David L. Brautigan,
 James M. Lamer, and Jaroslaw Dziegielewski

CHROMATIN, GENE, AND RNA REGULATION

- **359** RNA-Binding Protein RBM24 Regulates p63 Expression via mRNA Stability
 Enshun Xu, Jin Zhang, Min Zhang, Yuqian Jiang,
 Seong-Jun Cho, and Xinbin Chen

- **370** DNA Damage-Binding Complex Recruits HDAC1 to Repress Bcl-2 Transcription in Human Ovarian Cancer Cells
 Ran Zhao, Chunhua Han, Eric Eisenhauer,
 John Kroger, Weiqiang Zhao, Jianhua Yu,
 Karuppaiyah Selvendiran, Xingluo Liu,
 Altaf A. Wani, and Qi-En Wang

DNA DAMAGE AND REPAIR

- **381** Triapine Disrupts CtIP-Mediated Homologous Recombination Repair and Sensitizes Ovarian Cancer Cells to PARP and Topoisomerase Inhibitors
 Z. Ping Lin, Elena S. Ratner, Margaret E. Whicker,
 Yashang Lee, and Alan C. Sartorelli

GENOMICS

- **394** AKT-Induced Tamoxifen Resistance Is Overturned by RRM2 Inhibition
 Khyati N. Shah, Kshama R. Mehta, David Peterson,
 Marie Evangelista, John C. Livesey, and Jesika S. Faridi

- **408** NF-κB Activation-Induced Anti-apoptosis Renders HER2-Positive Cells Drug Resistant and Accelerates Tumor Growth
 Shannon T. Bailey, Penelope L. Miron, Yoon J. Choi,
 Bose Kuchupurakkal, Gautam Maulik, Scott J. Rodig,
 Ruiyang Tian, Kathleen M. Foley, Teresa Bowman,
 Alexander Miron, Myles Brown, J. Dirk. Iglehart, and
 Debajit K. Biswas

- **421** Hypoxia-Independent Gene Expression Mediated by SOX9 Promotes Aggressive Pancreatic Tumor Biology
 Peter Camaj, Carsten Jäckel, Stefan Krebs,
 Enrico N. DeToni, Helmut Blum, Karl-Walter Jauch,
 Peter J. Nelson, and Christiane J. Bruns

ONCOGENES AND TUMOR SUPPRESSORS

- **433** PP6C Hotspot Mutations in Melanoma Display Sensitivity to Aurora Kinase Inhibition
 Heidi L. Gold, Jordan Wengrod,
 Eleazar Vega-Saenz de Miera, Ding Wang,
 Nathaniel Fleming, Lisa Sikkema, Tomas Kirchhoff,
 Tsivia Hochman, Judith D. Goldberg, Iman Osman,
 and Lawrence B. Gardner
Actin-Binding Protein, Espin: A Novel Metastatic Regulator for Melanoma
Takeshi Yanagishita, Ichiro Yajima, Mayuko Kumasaka, Yoshiyuki Kawamoto, Toyonori Tsuzuki, Yoshinari Matsumoto, Daisuke Watanabe, and Masashi Kato

BRAF^V600E Cooperates with PI3K Signaling, Independent of AKT, to Regulate Melanoma Cell Proliferation
Jillian M. Silva, Christina Bulman, and Martin McMahon

The Adherens Junction Protein Afadin Is an AKT Substrate that Regulates Breast Cancer Cell Migration
Sivan Elloul, Dmitriy Kedrin, Nicholas W. Knoblauch, Andrew H. Beck, and Alex Toker

The cover image shows immunofluorescence staining of normal breast tissue obtained from surgical specimens. The staining was performed with anti-Afadin (red channel), anti-E-cadherin (green channel), and DAPI (blue channel). The staining pattern reveals Afadin staining that is largely membrane restricted and excluded from nuclei. By contrast, in surgical specimens obtained from invasive breast carcinoma, Afadin shows a predominately nuclear expression pattern with near complete loss of membrane localization. For more information, see the article by Elloul and colleagues, beginning on page 464 in this issue. In this study, the authors conclude that nuclear translocation of Afadin, mediated by the PI3K and Akt pathway, is associated with enhanced breast cancer cell migration and in turn, tumor progression.