Smoking, p53 Mutation, and Lung Cancer

Don L. Gibbons1,2, Lauren A. Byers1, and Jonathan M. Kurie1

Abstract

This issue marks the 50th anniversary of the release of the U.S. Surgeon General’s Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways, and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein, we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models. Mol Cancer Res; 12(1); 3–13. ©2014 AACR.

Introduction

Smoking and lung cancer

Although smoking confers increased risk of multiple tumor types, perhaps no malignancy is more closely linked with smoking than lung cancer. Before the commercial introduction of cigarettes, the incidence of lung cancer was extremely low, but small epidemiologic studies and clinical observations as early as the 1930s suggested a potential causative relationship between tobacco exposure and a rise in lung cancer cases (reviewed in refs. 1, 2). These observations spurred large, definitive studies, along with the development of the appropriate methodology required for epidemiologic studies of chronic diseases, which by the 1950s provided strong epidemiologic evidence for the relationship between the amount of tobacco exposure and risk of cancer, the beneficial effects of cessation, and an association with tumor histology (3, 4).

However, these studies provided epidemiologic association without causation. Because no clear evidence for specific carcinogens in tobacco smoke had been found, and because experimental data recapitulating tobacco as a cancerous agent or providing a mechanistic biochemical explanation were lacking, the effect of smoking on lung cancer was not broadly endorsed and instead engendered significant debate in the medical community. This attitude began to change in the medical community on both sides of the Atlantic with statements by the British Medical Research Council in 1957 that endorsed tobacco as a direct cause of cancer and by the Surgeon General of the United States, Dr. Leroy E. Burney, in 1959, which defined smoking as the “principal etiologic factor in the increased incidence of lung cancer (5, 6).” The weight of the epidemiologic evidence was sufficient enough that the release of the first report of the Surgeon General’s Advisory Committee on Smoking and Health on January 11, 1964, by Dr. Luther L. Terry set into motion significant legislation by the U.S. Congress, and great public debate over how best to address smoking cessation and the health issues caused by smoking (7). Toward this end, the U.S. Congress adopted the Federal Cigarette Labeling and Advertising Act of 1965 and the Public Health Cigarette Smoking Act of 1969, which required health warnings on cigarette packaging, banned advertising in the media, and called for the issuance of an annual report on the health consequences of smoking. In September 1965, the Public Health Service established a unit called the National Clearinghouse for Smoking and Health, which was succeeded by the Centers for Disease Control and Prevention’s Office on Smoking and Health. Since 1965, these two agencies have been responsible for 29 reports on the health consequences of smoking and have provided on-going support for tobacco cessation and prevention efforts on the part of all levels of government and local communities. These efforts have produced substantial reductions in the number of current smokers in the United States, and recent estimates are that roughly 800,000 deaths from lung cancer were prevented due to these efforts (8).
Smoking and genetic mutations

It was not until the late 1980s that the data were presented demonstrating that lung tumors have high rates of mutation in known oncogenes like KRAS and in emerging tumor suppressors such as TP53. It was reported from analyses of both primary tumors and cell lines of many tumor types (including non–small cell and small cell lung cancer) that regions of the short arm of chromosome 17 (containing TP53) are frequently deleted, often along with point mutations in the remaining TP53 allele (9–13). At about the same time it was identified that patients with the Li–Fraumeni syndrome, who are susceptible to multiple tumor types at an early age, including lung carcinoma in the absence of tobacco exposure, have germline TP53 mutations (14). A database was established in the early 1990s of the documented TP53 mutations from all tumor types and cell lines (15), which continues to be maintained and updated by the International Agency for Research on Cancer for use by the scientific community (http://p53.iarc.fr/).

Tobacco smoke contains thousands of vapor phase and particulate phase compounds, at least 60 of which have been classified as carcinogens (Hoffman 2001), including polycyclic aromatic hydrocarbons (PAH) such as BaP (benzo[a]pyrene), dibenz[a,h]anthracene, 5-methylchrysene and dibenz[a,l]pyrene, and the N-nitrosamines [such as NNK (nicotine-derived nitrosamine ketone) and NNN (N'-nitrosonornicotine)]. Chronic exposure of the lung epithelium to this mixture of compounds confers increased cancer susceptibility due to the formation of DNA adducts that produce oncogenic mutations [reviewed in (16)]. The heightened mutation rate is observed in smoking-related cancers versus other tumor types, in lung cancers from smokers versus nonsmokers, and an increase in mutations is even found in the noncancerous lung tissues of smokers (17). Additionally, the mutations observed in relation to tobacco exposure are commonly due to the presence of G to T transversions. This mutational pattern is consistent with the mechanism of DNA adduct formation from carcinogens in tobacco smoke, most prominently PAH and NNK (18). Of the multitude of carcinogens found in tobacco smoke, these are the best documented to produce lung tumors in experimental conditions and to produce DNA adducts at the same DNA sites found in patient tumors. These findings provide a mechanistic link between the epidemiologic association of smoking with lung cancer and the observed mutation profiles in lung tumors.

More recently, whole-genome, exome, and RNA sequencing of patient tumors from individual institutions and The Cancer Genome Atlas (TCGA) projects on lung adenocarcinoma, lung squamous cell carcinoma, and squamous cell carcinomas of the head and neck have confirmed several of these points in regard to the effect of tobacco exposure (19–21). First, the genome-wide mutational burden is significantly higher in lung adenocarcinoma from patients who are current or former smokers, similar to that found in patients with squamous cell carcinoma, a group in which the percentage of smokers is much higher (Fig. 1). Second, lung cancers have a high p53-specific mutation rate (46% in lung adenocarcinoma and 81% in squamous cell) and display a high percentage of mutations in hotspots regions (Fig. 2; ref. 19).

Normal cellular functions of p53 and potential roles in cancer

The early data on p53 arose from studies of tumorigenic DNA viruses such as simian virus 40 (SV40) and human papilloma virus (HPV), which revealed that p53 is often the target of viral oncoproteins (22). The p53 protein was originally discovered and the gene subsequently cloned by investigation of proteins interacting with the SV40 large T antigen that account for the transforming capability of the virus (23, 24). The unique nature of p53 function generated initial confusion about whether it is an oncogene or a tumor suppressor (22). Analysis of tumor tissues and tumor cell lines revealed that the half-life of p53 and the amounts of protein found were greater in nontransformed cells. Along with the initial in vitro data that demonstrated transforming capability for p53, this evidence suggested p53 as a new oncoprotein similar to the previously discovered Ras and Myc. But it was subsequently found that the DNA clones used in these early experiments contained mutant TP53 sequences, and that wild-type (WT) TP53 not only lacked transforming capability, but was able to suppress Ras-induced transformation in vitro in complementation assays and the formation of tumors in animals (25, 26). Conversely, mutant TP53 was able to transform rodent and human cell lines or primary cultured cells, and both null and point mutant alleles were able to cooperate with Ras to transform cultured cells, although the point mutation produced a stronger effect (27). The conclusion from these results was that p53 normally serves as a tumor suppressor, the function of which is lost upon allelic loss or mutation.

The TP53 gene encodes for a protein of 53 kDa, which is a sequence-specific transcription factor found at low levels under normal cellular conditions due to the regulatory action of the E3 ubiquitin ligase mouse double minute 2 (MDM2) (28, 29). In response to many types of cellular stress, including DNA replication stress or damage (30), p53 is rapidly stabilized and the accumulated protein localizes to the nucleus. The outcome of p53 function is highly context-dependent, depending on its complex effects in activating transcriptional activity at some sites while repressing others, the balance of which may result in cell cycle arrest and repair of the damaged DNA, cellular apoptosis, senescence, metabolic changes, or autophagy (31, 32). Multiple factors affect this outcome, including the affinity of gene promoters for p53 binding, the ability of p53 to cooperatively bind to DNA, and the effects of cofactor binding at p53 promoter sites (33–35). Recent genome-wide chromatin immunoprecipitation and sequencing (ChIP-seq) studies have demonstrated a core p53 default program that is significantly modified by the presence of cofactor binding at p53 sites to generate composite response elements and the affinity of p53 oligomers for binding to high- or low-affinity sites (34–36).

The domain structure of p53 reveals an N-terminal transactivation domain, a core DNA-binding domain, and a C-terminus containing both a tetramerization and a C-
terminal regulatory domain (Fig. 3A). Extensive posttranslational modification occurs in each of the domains of p53, including serine/threonine phosphorylation (most prominently in the N-terminus), lysine acetylation, ubiquitination, neddylation, sumoylation, and methylation. The schema depicted here is a simplified version and the reader is referred to several detailed reviews for a thorough treatment of this subject (31, 32, 36). The posttranslational modifications modulate p53 protein stability, cellular localization, its complement of interacting proteins, and its subsequent target promoter selectivity. Acetylation or ubiquitination of the same amino acid residues has counteracting roles to respectively stabilize or destabilize the protein and thereby regulate activity. Although many of the posttranslational modifications have pronounced effects when tested in vitro, testing in mice by knock-in approaches instead demonstrates that they fine-tune p53 function, likely due to functional redundancy of many of the sites. Of particular interest in this regard is a recent report comparing p53 null mice with the 3KR mutant, in which three acetylation sites of the DNA binding domain (K117, K161, K162; mouse protein numbering) were replaced with arginine, which demonstrated a lack of cell cycle arrest, apoptosis or senescence in vivo during thymic lymphoma formation (37). Nevertheless, the 3KR mutant p53 retained the ability to regulate energy metabolism (glucose uptake and glycolysis) and antioxidant function, and thereby suppress formation of thymic lymphomas. These findings challenge the prevailing models of p53 centered around cell cycle arrest and apoptosis/senescence, and highlight other cellular functions regulated by p53 that are critical to regulating in vivo tumorigenesis.

In addition to the direct effects of tobacco carcinogens on the cellular DNA of bronchial epithelial cells, tobacco smoke indirectly affects the overall tumor microenvironment by eliciting chronic inflammation in the lungs (38). Even the inflammation from short-term experimental tobacco smoke exposure has been shown to promote lung cancer progression in both carcinogen- and genetic Kras-initiated models (39). These findings are complemented by work from several groups demonstrating that Kras and p53 mutation drive NF-κB–dependent signaling in murine lung tumors (40, 41). Within the setting of chronic inflammation, mutant p53 in tumor cells could potentially abrogate the normal p53-mediated check on cellular response to the inflammatory signals.

The DNA damage checkpoint serves as a potent activator of p53 function and allelic dilution of WT p53 by chromosomal deletion, along with point mutation in the remaining copy, is frequently observed in diverse human tumor
types as a mechanism to bypass this critical checkpoint (30).

Although mutations have been found at almost all amino acid positions in the protein, several hot spot regions have been identified (V157, R158, R175, G245, R248, R249, and R273), which highlight the critical function of the core DNA-binding domain (Fig. 3B). Two classes of mutations emerge: structural mutants that affect the folding and stability of the protein, and mutations that critically affect direct amino acid–DNA contacts. Interestingly, besides classic tumor suppressor functions that are lost upon mutation of the protein, both classes of mutants have also been shown to produce gain-of-function phenotypes. Because p53 monomers oligomerize to form functional tetramers, and interact with many other proteins and sequence-specific promoter elements to produce target gene transcription, the presence of mutations can alter the protein–protein interactions that define its proper function (42). The missense mutant p53 alleles demonstrate dominant-negative activity through their ability to form p53 tetramers or other protein–protein complexes, and the altered DNA binding of the mutant proteins can produce gain-of-function activity. Many of the effects of mutant p53 may be through its ability to oligomerize to form mixed tetramers with the p53 family members, p63 and p73 (43).

Early work with autopsy-derived explants of human bronchial epithelial tissues demonstrated the ability to study these tissues in culture over many weeks and derive primary normal human bronchial epithelial (NHBE) cells (44, 45). Further work showed that these primary cells could be transformed with viral oncogenes from SV40, allowing extended study in culture to test for genetic changes that would reproduce the multistage bronchial carcinogenesis in vivo (46). Work with the tissues and primary cells confirmed that components of cigarette smoke condensate (CSC), including BAP and PAH, bind to the cellular DNA and produce phenotypic changes (47–49). Long-term exposure to NNK or CSC of the immortalized nontumorigenic human bronchial epithelial cells grown in deepithelialized rat tracheas in vivo produced neoplastic transformation to invasive adenocarcinomas (48). More recently, Minna’s
group produced human bronchial epithelial cell (HBEC) lines that are immortalized without viral oncogenes by overexpression of WT cyclin-dependent kinase 4 (CDK4), to prevent the p16INK4a-mediated growth arrest, and the catalytic subunit of telomerase [hTERT (human telomerase reverse transcriptase)], to bypass telomere-dependent senescence (50). The CDK4/hTERT-immortalized cells have an intact p53 checkpoint and display gene expression profiles that cluster with normal nonimmortalized bronchial cells, distinct from both lung cancer cell lines and HBECs immortalized with the HPV-16 viral oncoproteins E6/7.

In line with the multistage carcinogenesis model, multiple additional oncogenic changes [mutant KRAS expression, loss of p53, c-MYC, and/or serum-induced epithelial–mesenchymal transition (EMT)] are required to confer a full malignant phenotype on these cells, including in vivo tumor growth (51). Strikingly, a partial malignant phenotype was produced by moderate mutant KRAS expression, but full malignant transformation was dependent on high levels of KRAS expression, which required p53 loss to bypass oncogene-induced senescence (52).

Animal models of p53 loss and mutation

Although in vitro studies with cultured cell lines have revealed some of the functions of p53, description of the more nuanced in vivo biology relied upon the generation of animal models. Many laboratories have generated animal models to test the in vivo consequences of p53 loss or mutation. The first animal data were reported by Lavigueur and colleagues (53), in which cDNA fragments from Friend leukemia viruses were electroporated into embryos to obtain transgenic animals carrying mutated p53 fragments along with the two copies of WT p53. Multiple types of tumors developed in these transgenic animals, including lung, sarcoma, and lymphoid malignancies.

The second generation of animal models that were created relied upon gene targeting to produce a null p53 allele, which could then be studied in heterozygous or homozygous conditions (54). Surprisingly, these animals had normal development, but in the homozygous state were found to have a pronounced increase in the susceptibility for early tumor onset (approximately 20 weeks) of many tumor types (approximately 75% of animals), mostly sarcomas and T-cell lymphomas, although a few epithelial tumors were described. Further work with these and similar models revealed that the animals had enhanced progression of carcinogen-induced malignancies (55), increased susceptibility to radiation-induced sarcomas and lymphomas, and accumulation of chromosomal abnormalities (56).

Despite the findings from these TP53 knockout models, most human tumors have a missense mutation in p53. To better understand the potential dominant-negative and gain-of-function effects of mutant TP53, a transgenic animal model was generated carrying the TP53*Ala135Val* mutant as a single autosomal allele. To test the role of mutant p53 in different backgrounds, these animals were crossed with the WT or p53 null alleles (57). In this study, the presence of the mutant transgene both enhanced tumorigenesis and shifted
the tumor spectrum, with a strikingly high occurrence of lung adenocarcinomas (20%) in the heterozygous animals carrying the point mutant transgene (p53^{R172H}–Tg), but not in the heterozygous animals without the transgene (p53^{+/−}), nor in the p53 null animals. This report clearly demonstrated that mutant p53 can produce a striking gain-of-function phenotype.

Because human tumors frequently have multiple genes affected by mutation and because early in vitro models revealed synergy between p53 and other oncogenes, murine models were generated with a combination of the p53 null alleles and other activated oncogenes or tumor suppressors, e.g., Rb. The combination of Rb and Tp53 knockout produced a faithful model of small cell lung cancer, consistent with the fact that approximately 90% of human small cell lung cancers have simultaneous loss of both genes (58–60). In non–small cell lung cancer, the two most frequently mutated genes are Kras and Tp53. The presence of an activating Kras^{G12D} or Kras^{G12V} allele in the lung epithelia of animals produces adenomatous hyperplasia, adenomas, and histologic progression to nonmetastatic adenocarcinomas (61–63). In contrast, combination of a mutant Kras allele with either Tp53 loss or mutation (R172H, structural mutation; R270H, contact mutation) produces faster growing tumors with higher tumor grade, and greater histopathologic similarity to the human disease (64, 65). Additionally, tumors in these animals display invasive and metastatic capability. The synergy between the Kras and Tp53 mutations was demonstrated by the phenotypically more advanced lung tumors in the combination and the shift in the tumor spectrum from a preponderance of sarcomas and lymphomas in the animals with only p53 mutation to epithelial tumors, such as lung adenocarcinoma.

The gain-of-function phenotype observed with mutant p53 in cell and animal models may result from the fact that mutant p53 can produce a striking gain-of-function phenotype observed in patients with lung cancer (64, 65). The pattern of metastatic spread and compromised longevity of the animals is similar to that found in patients with lung cancer and transcriptome expression profiling of these primary and metastatic tumors recapitulates features of the patient tumors (71, 72). As such, these models have been useful to identify oncogenic dependencies in established tumors, such as NF-κB activation (40, 41), transcriptional or epigenetic drivers of histologic progression and metastasis, such as Nkx2-1 or microRNA (miRNA) changes (72, 73), and signaling pathway altered during tumor invasion, e.g., Notch signaling (74).

Work by our group and others has shown that there is a prominent role for miRNA reprogramming in these models that is necessary for tumor cell progression and metastasis. The EMT occurs in a subset of tumor cells in this model, producing invasion and metastasis (73, 74). This phenotype is dependent upon the loss of expression of the miR-200 family members, the derepression of the EMT-inducing transcription factors such as Zeb1, and the concomitant reprogramming of the protein expression in the cells (75). Similar changes in the miR-200 family members were seen in human non–small cell lung cancer cell lines and more recently in tumors from the TCGA dataset (73, 76). The upregulation of transcription factors such as Zeb1 also produces concomitant changes in the expression of other miRNAs such as miR-34a (77, 78). These complementary miRNA changes are required for the full invasive and metastatic phenotype. Interestingly, work from the Belinsky laboratory has shown that treatment of HBECs with stressful, but not genotoxic, doses of tobacco carcinogens (methylnitrosourea and benzo(a)pyrene-diolepoxide) produces epigenetic repression of miR-200 family members by promoter hypermethylation (79). The cells then display mesenchymal features, including increased anchorage-independent growth and invasion in 3D culture.

Clinical implications of p53 mutation

There is certainly a role in Li–Fraumeni kindreds for genetic testing of individuals, with regular medical check-ups and early screening for breast and colon cancer recommended for family members with a documented Tp53 mutation. However, there is no role for Tp53 mutation screening in the general population. In patients with a diagnosed lung cancer, molecular profiling of tumor tissue is frequently obtained, but the p53 status of the tumor is not currently used in therapeutic decision-making. Review of historic data is controversial about the predictive or prognostic role of p53 in lung cancer, but more recent data from a meta-analysis reported that Tp53 mutations are a marker of poor prognosis (80), which has been confirmed by retrospective immunohistochemical (IHC) analysis of samples from two independent clinical trials (CALGB 9633 and JBR.10) in which p53-positive staining by IHC conferred inferior survival, with a HR of 2.3 and 1.89, respectively, and was also predictive of benefit from chemotherapy (81, 82). However, it is unclear if all p53 mutants confer the same
clinical risk, whether the status of the second p53 allele is important for outcome and whether IHC is the best assay for assessing the p53 status of tumors. Our clinical thinking on this point will likely evolve as further analyses emerge from more complete datasets of sequenced patient tumors, such as found in The Cancer Genome Atlas and similar projects.

Multiple groups have generated murine models with conditional null or hypomorphic alleles of p53 to test the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).

Second, the effect of reactivating WT p53 in established tumors. The results of these studies were surprising in several ways. First, the effect on tumor cells is dependent upon the tumor type, with lymphomas responding differently than sarcomas and carcinomas. The Evan laboratory used the E1t-Myc model in combination with an allele encoding a p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83). Upon activation of p53 by treatment with tamoxifen, induction of p53-estrogen receptor fusion protein (83).
second WT allele, had the best response to doxorubicin and longer time to relapse. At the cellular level, this phenotype was due to cell cycle arrest/senescence in the tumors retaining WT p53 versus progression through the cell cycle in tumors with mutant p53, which resulted in aberrant mitoses and induction of apoptosis. These results may explain the paradoxical findings that mutant TP53 is a poor prognostic factor, but a good predictive factor for response to chemotherapy in some tumor types. They also highlight the importance of full TP53 genotyping if clinical decisions are to be made on this information, as the LOH status of the tumors in this study was critical to their response to chemotherapy.

Targeted therapies for p53

Multiple strategies have been advocated to restore WT p53 function and target the p53 missense mutants frequently found in cancers. These include viral vector delivery of WT p53, small molecules designed to alter the mutant protein conformation or targeted disruption of its interaction with other proteins. Due to the difficulties of appropriately delivering vector-based TP53, and the modest results in phase I and II trials (93, 94), the efforts in the field have shifted. Nutlin (RG7112) was the first compound described in its class, capable of targeting the interaction of p53 and MDM2 (95). By blocking the p53 binding cleft of MDM2, nutlin5 inhibits MDM2-mediated degradation of WT p53, increasing p53 transcriptional activity. However, because many tumors do not retain any WT p53, these agents have found limited potential clinical application.

Other agents, such as p53 reactivation and induction of massive apoptosis (PRIMA-1) and reactivation of transcriptional reporter activity (RETRA), were discovered in screens specifically designed to find compounds able of suppressing tumor cell growth in a mutant p53-dependent manner. The compound 2,2-bis(hydroxymethyl)-1-azabicyclo[2.2.2]octan-3-one was identified more than 10 years ago and named PRIMA-1 (96). The reported mechanism of action relies upon binding of the molecule to the core domain of mutant p53, stabilizing its conformation via alkylation of thiol groups, producing a p53 molecule with WT conformation that is capable of appropriately binding its transcriptional targets, leading to cell cycle arrest and apoptosis in tumor cells. It has been reported to have efficacy in cell culture and animal xenograft models of mutant p53 cancers. The PRIMA-1 structural analog, APR-246 (PRIMA-1MET), is a methylated derivative that is the first drug of this class to reach clinical testing. Recently, a phase I trial was completed and reported on the dosing and safety profile of APR-246 in 22 patients with hematologic malignancies or hormone refractory prostate cancer (97). Given by intravenous infusion once per day for four consecutive days, it was well tolerated by patients, with predictable pharmacokinetic properties. Evidence from global expression profiling of circulating hematologic tumor cells from treated patients demonstrated cell cycle arrest, apoptosis, and upregulation of p53 target genes, NOXA, PUMA, BAX. Whether all of the gene expression changes induced by APR-246 in patient tumors can be attributed to p53-specific mechanisms versus off-target effects is currently unclear.

RETRA (2-(4,5-dihydro-1,3-thiazol-2-ylthio)-1-(3,4-dihydroxyphenyl)ethane hydrobromide) is reportedly the best in a small class of compounds with p53-mutant–specific activity that produces slower growth, reactivation of apoptosis, and repression of tumor formation in a xenograft model. The reported mechanism of action is that treatment with RETRA releases p73 from its complex with mutant p53, producing reactivation of many downstream p73 transcriptional targets, such as CDKN1A and the effector caspases 3 and 7 (98).

Perspective and Conclusions

Tobacco exposure produces a heavy burden of genomic mutations in lung cancer, including mutation of the tumor suppressor TP53. Both loss of the WT p53 function and gain of mutant p53 function are important to the tumorigenic process. TP53 alterations are very frequent in squamous cell carcinoma, adenocarcinoma, and small cell carcinoma of the lung. Both in vitro and in vivo models of lung cancer reveal the critical role of p53 alteration to malignant transformation, histologic progression, invasion, and metastasis. Clinical treatment paradigms will need to evolve to incorporate the role of p53 loss and mutation, accounting for the differential effect on outcomes and our current inability to directly target p53 status in tumors. Preclinical models will remain an invaluable set of tools for elucidating a more complete understanding of p53 biology and the continued investigation of how to best target aberrant p53 function clinically.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: D.L. Gibbons

Development of methodology: L.A. Byers

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.M. Kurie

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D.L. Gibbons, L.A. Byers

Writing, review, and/or revision of the manuscript: D.L. Gibbons, L.A. Byers, J.M. Kurie

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D.L. Gibbons

Study supervision: J.M. Kurie

Acknowledgments

The authors thank Dr. Lixia Diao and Dr. Jing Wang for their assistance in analyzing the TCGA datasets for the information in Figs. 1 and 2. The authors also apologize to the authors whose work they have not been able to cite owing to space limitations.

Grant Support

This work was supported by the MD Anderson Cancer Center Physician-Scientist Program (D.L. Gibbons and L.A. Byers), NCI K08 CA151651 (D.L. Gibbons), and the Eliza and Ina A. Schackelford Endowed Professorship in Lung Cancer Research (J.M. Kurie).

Received October 8, 2013; revised December 11, 2013; accepted December 12, 2013; published online January 17, 2014.
References

Smoking, p53 Mutation, and Lung Cancer

Don L. Gibbons, Lauren A. Byers and Jonathan M. Kurie

Updated version
Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/12/1/3

Cited articles
This article cites 97 articles, 34 of which you can access for free at:
http://mcr.aacrjournals.org/content/12/1/3.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/12/1/3.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.