ABOUT THE COVER

In prostate epithelial cells, MED1 serves as a key transcriptional coactivator for the androgen receptor and other signal-activated transcription factors. MED1 can be phosphorylated by ERK and AKT, kinases that are commonly hyperactivated in prostate cancers as a function of tumor progression. MED1 phosphorylation significantly stabilizes its nuclear half-life and stimulates its transcriptional coactivator activity. Jin and colleagues used immunohistochemistry to characterize MED1 levels in an Nkx3.1:Pten-mutant mouse model of prostate cancer that recapitulates the human disease. Importantly, Nkx3.1:Pten-mutant prostate cancers are genetically programmed to hyperactivate ERK and AKT signaling in parallel with cancer progression. The cover shows MED1 overexpression in a Nkx3.1:Pten-mutant prostate adenocarcinoma that was resistant to castration. For additional results and details, please see the article by Jin and colleagues on page 736 of this issue.