<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>593</td>
<td>mda-7/IL-24 Expression Inhibits Breast Cancer through Upregulation of Growth Arrest-Specific Gene 3 (gas3) and Disruption of β1 Integrin Function</td>
<td>You-Jun Li, Guodong Liu, Yanmei Li, Laura M. Vecchiarelli-Federico, Jeff C. Liu, Eldad Zacksenhaus, Sze W. Shan, Burton B. Yang, Qi Li, Rupesh Dash, Paul B. Fisher, Michael C. Archer, and Yaacov Ben-David</td>
</tr>
<tr>
<td>604</td>
<td>Nonecanonical Regulation of the Hedgehog Mediator GLI1 by c-MYC in Burkitt Lymphoma</td>
<td>Joon Won Yoon, Marisa Gallant, Marilyn LG Lamm, Stephen Iannaccone, Karl-Frederic Vieux, Maria Proytcheva, Elizabeth Hyjek, Philip Iannaccone, and David Walterhouse</td>
</tr>
<tr>
<td>616</td>
<td>RAS/MEK-Independent Gene Expression Reveals BMP2-Related Malignant Phenotypes in the NF1-Deficient MPNST</td>
<td>Daochun Sun, Ramsi Haddad, Janice M. Krania, Steven D. Horne, and Michael A. Tainsky</td>
</tr>
<tr>
<td>628</td>
<td>CDCP1 Regulates the Function of MT1-MMP and Invadopodia-Mediated Invasion of Cancer Cells</td>
<td>Yuri Miyazawa, Takamasa Uekita, Yuumi Ito, Motoharu Seiki, Hideki Yamaguchi, and Ryuichi Sakai</td>
</tr>
<tr>
<td>651</td>
<td>The Tyrosine Phosphatase SHP2 Regulates Focal Adhesion Kinase to Promote EGF-Induced Lamellipodia Persistence and Cell Migration</td>
<td>Zachary R. Hartman, Michael D. Schaller, and Yehew M. Agazie</td>
</tr>
</tbody>
</table>
Deacetylated GM3 Promotes uPAR-Associated Membrane Molecular Complex to Activate p38 MAPK in Metastatic Melanoma
Qiu Yan, Daniel Q. Bach, Nandita Gatla, Ping Sun, Ji-Wei Liu, Jian-Yun Lu, Amy S. Paller, and Xiao-Qi Wang

Systems Analysis of the NCI-60 Cancer Cell Lines by Alignment of Protein Pathway Activation Modules with "-OMIC" Data Fields and Therapeutic Response Signatures
Giulia Federici, Xi Gao, Janusz Slawek, Tomasz Arodz, Amanuel Shitaye, Julia D. Wulfkuhle, Ruggero De Maria, Lance A. Liotta, and Emanuel F. Petricoin III

Correction: Analysis of mRNA Profiles after MEK1/2 Inhibition in Human Pancreatic Cancer Cell Lines Reveals Pathways Involved in Drug Sensitivity

ABOUT THE COVER
Nonmalignant immortalized human bronchial epithelial cells (HBECs, containing hTERT and CDK4 providing a bypass of p16 – two common oncogenic changes found in lung cancer) can be progressed to fully malignant cells capable of in vivo tumor formation following the introduction of defined oncogenic alterations (such as high levels of oncogenic KRAS, p53 knockdown, with or without exogenous c-myc expression) mimicking genetic alterations commonly found in non-small cell lung cancer. Recent genomic data shows large number of sequence altering mutations in human lung cancers requiring sorting out of "passenger" and "driver" oncogenic changes. The HBEC preclinical in vitro model provides a way to test these candidates and identify the minimal, most crucial set of genetic alterations required for full malignant transformation of a bronchial epithelial cell. NOD/SCID xenograft tumors of cells with similar oncogenic changes amazingly led to multiple different lung cancer histologies (adenocarcinoma, squamous carcinoma, adeno-squamous and large cell carcinoma) indicating that factors other than oncogenic changes dictate histology. Shown here is one of the HBECp53,KRAS tumors that differentiated into typical lung adenocarcinoma as demonstrated by Alcian-Blue Periodic Acid Schiff (PAS) stain where mucins are stained with Alcian blue (original magnification at 10X). For examples of the other histologies and details, see article by Sato, Larsen, and colleagues on page 638.
Molecular Cancer Research

11 (6)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://mcr.aacrjournals.org/content/11/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>