Highlights of This Issue 205

CELL CYCLE AND SENESCENCE

Nuclear Expression of β-Catenin Promotes RB Stability and Resistance to TNF-Induced Apoptosis in Colon Cancer Cells

Jinbo Han, Rossana C. Soletti, Anil Sadarangani, Priya Sridevi, Michael E. Ramirez, Lars Eckmann, Helena L. Borges, and Jean Y.J. Wang

DNA DAMAGE AND REPAIR

Microenvironmental Regulation of BRCA1 Gene Expression by c-Jun and Fra2 in Premalignant Human Ovarian Surface Epithelial Cells

Lixin Zhou, Marcia Graves, Gwen MacDonald, Jane Cipollone, Christopher R. Mueller, and Calvin D. Roskelley

DNA DAMAGE AND REPAIR

MnSOD Promotes Tumor Invasion via Upregulation of FoxM1–MMP2 Axis and Related with Poor Survival and Relapse in Lung Adenocarcinomas

Po-Ming Chen, Tzu-Chin Wu, Shwn-Huey Shieh, Yi-Hui Wu, Min-Chin Li, Gwo-Tarng Shieu, Ya-Wen Cheng, Chih-Yi Chen, and Huei Lee

ONCOGENES AND TUMOR SUPPRESSORS

Molecular Dissection of AKT Activation in Lung Cancer Cell Lines

Yanan Guo, Jinyan Du, and David J. Kwiatkowski

SIGNAL TRANSDUCTION

Neurotransmitter Substance P Mediates Pancreatic Cancer Perineural Invasion via NK-1R in Cancer Cells

Xuqi Li, Guodong Ma, Qingyong Ma, Wei Li, Jiangbo Liu, Liang Han, Wanxing Duan, QinHong Xu, Han Liu, Zheng Wang, Qing Sun, Fenglei Wang, and Erxi Wu

Acquisition of the Metastatic Phenotype Is Accompanied by H2O2-Dependent Activation of the p130Cas Signaling Complex

Nadine Hempel, Toni R. Bartling, Badar Mian, and J. Andres Melendez

Contents

Defining the Molecular Basis of Malignancy and Progression

March 2013 • Volume 11 • Number 3

Molecular Cancer Research

Defining the Molecular Basis of Malignancy and Progression

Highlights of This Issue 205

CELL CYCLE AND SENESCENCE

Nuclear Expression of β-Catenin Promotes RB Stability and Resistance to TNF-Induced Apoptosis in Colon Cancer Cells

Jinbo Han, Rossana C. Soletti, Anil Sadarangani, Priya Sridevi, Michael E. Ramirez, Lars Eckmann, Helena L. Borges, and Jean Y.J. Wang

DNA DAMAGE AND REPAIR

Microenvironmental Regulation of BRCA1 Gene Expression by c-Jun and Fra2 in Premalignant Human Ovarian Surface Epithelial Cells

Lixin Zhou, Marcia Graves, Gwen MacDonald, Jane Cipollone, Christopher R. Mueller, and Calvin D. Roskelley

MnSOD Promotes Tumor Invasion via Upregulation of FoxM1–MMP2 Axis and Related with Poor Survival and Relapse in Lung Adenocarcinomas

Po-Ming Chen, Tzu-Chin Wu, Shwn-Huey Shieh, Yi-Hui Wu, Min-Chin Li, Gwo-Tarng Shieu, Ya-Wen Cheng, Chih-Yi Chen, and Huei Lee

ONCOGENES AND TUMOR SUPPRESSORS

Molecular Dissection of AKT Activation in Lung Cancer Cell Lines

Yanan Guo, Jinyan Du, and David J. Kwiatkowski

SIGNAL TRANSDUCTION

Neurotransmitter Substance P Mediates Pancreatic Cancer Perineural Invasion via NK-1R in Cancer Cells

Xuqi Li, Guodong Ma, Qingyong Ma, Wei Li, Jiangbo Liu, Liang Han, Wanxing Duan, QinHong Xu, Han Liu, Zheng Wang, Qing Sun, Fenglei Wang, and Erxi Wu

Acquisition of the Metastatic Phenotype Is Accompanied by H2O2-Dependent Activation of the p130Cas Signaling Complex

Nadine Hempel, Toni R. Bartling, Badar Mian, and J. Andres Melendez

Molecular Cancer Research

Defining the Molecular Basis of Malignancy and Progression

Defining the Molecular Basis of Malignancy and Progression iii www.aacrjournals.org

Downloaded from mcr.aacrjournals.org on June 21, 2017. © 2013 American Association for Cancer Research.
A hallmark of colon cancer is the activation of the Wnt-pathway; however, the HCT116 colon cancer cells do not express nuclear β-catenin despite a gain-of-function mutation in the CTNNB1 gene. As a result, HCT116 cells are sensitive to tumor necrosis factor-α-induced apoptosis. The nuclear (blue) expression of β-catenin (green) could be induced with a GSK3β inhibitor, although a fraction of β-catenin remained at the cell periphery and colocalized with F-actin (red). This induced nuclear expression of β-catenin suppressed the apoptotic response to tumor necrosis factor-α in HCT116 cells. For details, see the article by Han and colleagues on page 207 in this issue.
Molecular Cancer Research

11 (3)

Updated version
Access the most recent version of this article at:
http://mcr.aacrjournals.org/content/11/3

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.