<table>
<thead>
<tr>
<th>Highlights of This Issue 993</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVIEW</td>
</tr>
</tbody>
</table>
| 995 | Epithelial Plasticity, Cancer Stem Cells, and the Tumor-Supportive Stroma in Bladder Carcinoma
Geertje van der Horst, Lieke Bos, and Gabri van der Pluijm |
| **ANGIOGENESIS, METASTASIS, AND THE CELLULAR MICROENVIRONMENT** |
| 1010 | FAS1 Domain Protein Inhibits VEGF165-Induced Angiogenesis by Targeting the Interaction between VEGFR-2 and αvβ3 Integrin
Ju-Ock Nam, Hye-Nam Son, Eunsung Jun, Kiwoon Cha, Byung-Heon Lee, Rang-Woon Park, and In-San Kim |
| 1021 | New Insight into the SDF-1/CXCR4 Axis in a Breast Carcinoma Model: Hypoxia-Induced Endothelial SDF-1 and Tumor Cell CXCR4 Are Required for Tumor Cell Intravasation
Fengyan Jin, Ulf Brockmeier, Friedrich Otterbach, and Eric Metzen |
| **CELL CYCLE, CELL DEATH, AND SENESCENCE** |
| 1032 | Protein Kinase Casein Kinase 2-Mediated Upregulation of N-Cadherin Confers Anoikis Resistance on Esophageal Carcinoma Cells
Hyeonseok Ko, Seongrak Kim, Cheng-Hao Jin, Eunjung Lee, Sunyoung Ham, Jong In Yook, and Kunhong Kim |
| **CANCER GENES AND GENOMICS** |
| 1039 | Identification of Genomic Targets of Transcription Factor Aebp1 and its role in Survival of Glioma Cells
| **DNA DAMAGE AND CELLULAR STRESS RESPONSES** |
| 1052 | Suberoylanilide Hydroxamic Acid as a Radiosensitizer through Modulation of RAD51 Protein and Inhibition of Homology-Directed Repair in Multiple Myeloma
Xufeng Chen, Patty Wong, Eric H. Radany, Jeremy M. Stark, Corentin Laulier, and Jeffrey Y.C. Wong |
| **SIGNALING AND REGULATION** |
| 1065 | GSK-3 Promotes Cell Survival, Growth, and PAX3 Levels in Human Melanoma Cells
Jennifer D. Kubic, Joseph B. Maccarenhas, Takumi Iizuka, Don Wollgeher, and Deborah Lang |
| 1077 | The Signal Peptide of Mouse Mammary Tumor Virus-Env: A Phosphoprotein Tumor Modulator
Dafna Feldman, Maayan Roniger, Allan Bar-Sinai, Ori Braithard, Carmit Natan, Dona C. Love, John A. Hanover, and Jacob Hochman |
| 1087 | Differential Tumorigenic Potential and Matriptase Activation between PDGF B versus PDGF D in Prostate Cancer
Abdo J. Nay, Joshua J. Won, Lisa S. Movilla, and Hyeong-Reh C. Kim |
| 1098 | EWS/FLI1 Regulates EYA3 in Ewing Sarcoma via Modulation of miRNA-708, Resulting in Increased Cell Survival and Chemoresistance
Tyler P. Robin, Anna Smith, Erin McKinsey, Lisa Reaves, Paul Jedlicka, and Heide L. Ford |
| 1109 | TNF-α Induces Epithelial–Mesenchymal Transition of Renal Cell Carcinoma Cells via a GSK3β-Dependent Mechanism
Ming-Yi Ho, Shye-Jye Tang, Mei-Jen Chuang, Tai-Lung Cha, Jing-Yao Li, Guang-Huan Sun, and Kuang-Hui Sun |
Ligand Binding Promotes CDK-Dependent Phosphorylation of ER-Alpha on Hinge Serine 294 but Inhibits Ligand-Independent Phosphorylation of Serine 305
Jason M. Held, David J. Britton, Gary K. Scott, Elbert L. Lee, Birgit Schilling, Michael A. Baldwin, Bradford W. Gibson, and Christopher C. Benz

ABOUT THE COVER

Mouse Mammary Tumor Virus (MMTV) is primarily associated with mammary carcinoma and lymphomas in mice. The signal peptide of MMTV-Env precursor (MMTV-p14) translocates to nucleoli of infected cells and co-localizes with nucleophosmin. Mutations along the sequence of MMTV-p14 ectopically expressed in MCF-7 breast carcinoma cells affect cellular localization of the protein in vitro (mutations within the nuclear localization signal – NLS) and tumorigenicity in vivo (mutations in putative phosphorylation sites). Immunofluorescence of MMTV-p14 with half of the NLS deleted (green) demonstrates partial localization in the nucleus and the cytoplasm. Nucleophosmin (red) remains in the nucleoli. For details, see article by Feldman and colleagues on page 1077.