Highlights of This Issue 857

REVIEW

State of the Science: An Update on Renal Cell Carcinoma

Cell Cycle, Cell Death, and Senescence

- **A Novel 19q13 Nucleolar Zinc Finger Protein Suppresses Tumor Cell Growth through Inhibiting Ribosome Biogenesis and Inducing Apoptosis but Is Frequently Silenced in Multiple Carcinomas**
 - Yingduan Cheng, Pei Liang, Hua Geng, Zhaohui Wang, Lili Li, Suk Hang Cheng, Jianming Ying, Xianwei Su, Ka Man Ng, Margaret H.L. Ng, Tony S.K. Mok, Anthony T.C. Chan, and Qian Tao

Angiogenesis, Metastasis, and the Cellular Microenvironment

- **FES Kinase Promotes Mast Cell Recruitment to Mammary Tumors via the Stem Cell Factor/KIT Receptor Signaling Axis**
 - Ester Kwok, Stephanie Everingham, Shengnan Zhang, Peter A. Greer, John S. Allingham, and Andrew W.B. Craig

- **α-Catulin Marks the Invasion Front of Squamous Cell Carcinoma and Is Important for Tumor Cell Metastasis**
 - Christine Cao, Yihu Chen, Rizwan Masood, Uttam K. Sinha, and Agnieszka Kobielak

Cancer Genes and Genomics

- **Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas**

- **Analysis of Gene Expression Regulated by the ETV5 Transcription Factor in OV90 Ovarian Cancer Cells Identifies FOXM1 Overexpression in Ovarian Cancer**
 - Marta Lauradó, Blanca Majem, Josep Castellví, Silvia Cabrera, Antonio Gil-Moreno, Jaume Reventós, and Anna Ruiz

DNA Damage and Cellular Stress Responses

- **The Proteasome Activator PA200 Regulates Tumor Cell Responsiveness to Glutamine and Resistance to Ionizing Radiation**
 - Jennifer Blickwedehl, Scott Olejniczak, Ryan Cummings, Nilofar Sarvaiya, Ana Mantilla, Asher Chanana-Khan, Tej K. Pandita, Marion Schmidt, Craig B. Thompson, and Naveen Bangia

- **Akt Promotes Post-Irradiation Survival of Human Tumor Cells through Initiation, Progression, and Termination of DNA-PKcs–Dependent DNA Double-Strand Break Repair**

Signaling and Regulation

- **Cdc42 and the Guanine Nucleotide Exchange Factors Ect2 and Trio Mediate Fn14-Induced Migration and Invasion of Glioblastoma Cells**
 - Shannon Fortin, Matthew J. Ennis, Cassie A. Schumacher, Cassandra R. Zylstra-Diegel, Bart O. Williams, Julianna T.D. Ross, Jeffrey A. Winkles, Joseph C. Loftus, Marc H. Symons, and Nhan L. Tran
Inhibition of Akt Potentiates 2-DG–Induced Apoptosis via Downregulation of UPR in Acute Lymphoblastic Leukemia
Joanna DeSalvo, Jeffim N. Kuznetsov, Jianfeng Du, Gilles M. Leclerc, Guy J. Leclerc, Theodore J. Lampidis, and Julio C. Barredo

Human ESC Self-renewal Promoting microRNAs Induce Epithelial–Mesenchymal Transition in Hepatocytes by Controlling the PTEN and TGFβ Tumor Suppressor Signaling Pathways
Christine J. Jung, Sushma Iyengar, Kimberly R. Blahnik, Joy X. Jiang, Candice Tahimic, Natalie J. Torok, Ralph W. de vere White, Peggy J. Farnham, and Mark Zern

ABOUT THE COVER
KIT receptor signaling in mast cells is linked to the recruitment of these immune cells to a variety of solid tumors that express Stem cell factor (SCF). Within tumors, mast cell-derived mediators can enhance growth of the tumor vasculature and promote metastasis. Thus, inhibitors of KIT receptor, or downstream signaling pathways linked to mast cell chemotaxis, may be useful to limit tumor progression. Using a time lapse chemotaxis assay, FES kinase-deficient mast cells (red) were found to migrate less than control mast cells (green) under an agarose drop containing SCF. Interestingly, in FES-deficient mice, mammary tumors expressing SCF also failed to attract comparable mast cells to wild-type control mice, and tumor progression was suppressed. For details, see article by Kwok and colleagues on page 881.
Molecular Cancer Research

10 (7)

| Updated version | Access the most recent version of this article at: http://mcr.aacrjournals.org/content/10/7 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.