Highlights of This Issue 483

REVIEW

485 | Biological Functions of Cytokeratin 18 in Cancer
Yu-Rong Weng, Yun Cui, and Jing-Yuan Fang

ANGIOGENESIS, METASTASIS, AND THE CELLULAR MICROENVIRONMENT

494 | Loss of TGF-β Responsiveness in Prostate Stromal Cells Alters Chemokine Levels and Facilitates the Development of Mixed Osteoblastic/Osteolytic Bone Lesions
Xiaohong Li, Julie A. Sterling, Kang-Hsien Fan, Robert L. Vessella, Yu Shyr, Simon W. Hayward, Lynn M. Matrisian, and Neil A. Bhowmick

CANCER GENES AND GENOMICS

504 | miRNA Profiling in Colorectal Cancer Highlights miR-1 Involvement in MET-Dependent Proliferation
James F. Reid, Viktorija Sokolova, Eugenio Zoni, Andrea Lampis, Sara Pizzamiglio, Claudia Bertan, Susanna Zanutto, Federica Perrone, Tiziana Camerini, Gianfrancesco Gallino, Paolo Verderio, Ermanno Leo, Silvana Filotti, Manuela Gariboldi, and Marco A. Pierotti

DNA DAMAGE AND CELLULAR STRESS RESPONSES

535 | MYC-Driven Tumorigenesis Is Inhibited by WRN Syndrome Gene Deficiency
Russell Moser, Masafumi Toyoshima, Kristin Robinson, Kay E. Gurley, Heather L. Howie, Jerry Davison, Martin Morgan, Christopher J. Kemp, and Carla Grandori

SIGNALING AND REGULATION

546 | Environmental Estrogens Differentially Engage the Histone Methyltransferase EZH2 to Increase Risk of Uterine Tumorigenesis
K. Leigh Greathouse, Tiffany Bredfeldt, Jeffrey I. Everitt, Kevin Lin, Tia Berry, Kurunthachalam Kannan, Megan L. Mittelstadt, Shuk-mei Ho, and Cheryl L. Walker

558 | The Unliganded Glucocorticoid Receptor Positively Regulates the Tumor Suppressor Gene BRCA1 through GABP Beta
Heather D. Ritter, Lilia Antonova, and Christopher R. Mueller

RETRACTION

570 | Retraction: Role of Ribosomal Protein RPS2 in Controlling let-7a Expression in Human Prostate Cancer

CELL CYCLE, CELL DEATH, AND SENESCENCE

523 | Inactivation of Heat Shock Factor Hsf4 Induces Cellular Senescence and Suppresses Tumorigenesis In Vivo
Xiongjie Jin, Binnur Erglu, Wonkyoung Cho, Yukihiro Yamaguchi, Demetrius Moskopidis, and Nahid F. Mivechi
ABOUT THE COVER

Loss of TGF-β type II receptor (TβRII) in cancer-associated fibroblasts has been found in nearly 70% of human prostate cancer tissues. To determine whether similar changes occur in the bone marrow microenvironment after prostate cancer cells metastasize, immunohistochemistry was performed for α-smooth muscle actin (α-SMA), androgen receptor (AR), and TβRII in human bone tissue both associated with and not associated with prostate cancer bone metastasis. Neither α-SMA nor AR expression was detected in the bone marrow, but TβRII was highly expressed in marrow cells of naïve bone tissues. In the bone tissues associated with prostate cancer, however, α-SMA was detected in cancer-associated fibroblasts; AR was detected in prostate cancer cells and cancer-associated fibroblasts; TβRII expression was detected in cancer epithelial cells, but was lost in cancer-associated fibroblasts in the bone metastasis tissues examined, indicating that the prostate cancer cells exert a strong influence on cells within the bone microenvironment. For further details, please see Li and colleagues on page 494 in this issue.