Caveolin-1 Upregulation Contributes to c-Myc–Induced High-Grade Prostatic Intraepithelial Neoplasia and Prostate Cancer

Guang Yang, Alexei A. Goltsov, Chengzhen Ren, Shinji Kurosaka, Kohei Edamura, Richard Logothetis, Francesco J. DeMayo, Patricia Troncoso, Jorge Blando, John DiGiovanni, and Timothy C. Thompson

Abstract

Previously we reported caveolin-1 (Cav-1) overexpression in prostate cancer cells and showed that it promotes prostate cancer progression. Here, we report that Cav-1 was overexpressed in 41.7% (15 of 36) of human high-grade prostatic intraepithelial neoplasia (HGPIN) specimens obtained during radical prostatectomies. Positive correlations exist between Cav-1–positive (Cav-1+) HGPIN and Cav-1+ primary prostate cancer (rho = 0.655, P < 0.0001) and between Cav-1 and c-Myc expression in HGPIN (rho = 0.41, P = 0.032). To determine whether Cav-1 cooperates with c-Myc in development of premalignant lesions and prostate cancer in vivo, we generated transgenic mice with c-Myc overexpression driven by the ARR2PB promoter. In this ARR2PB–c-myc model, Cav-1 overexpression was found in mouse PIN (mPIN) lesions and prostate cancer cells and was associated with a significantly higher ratio of proliferative to apoptotic labeling in mPIN lesions than in the Cav-1–negative epithelia adjacent to those lesions (10.02 vs. 4.34; P = 0.007). Cav-1 overexpression was also associated with increased levels of P-Akt and VEGF-A, which were previously associated with Cav-1–induced prostate cancer cell survival and positive feedback regulation of cellular Cav-1 levels, respectively. In multiple prostate cancer cell lines, Cav-1 protein (but not mRNA) was induced by c-Myc transfection, whereas VEGF siRNA transfection abrogated c-Myc–induced Cav-1 overexpression, suggesting a c-Myc–VEGF–Cav-1 signaling axis. Overall, our results suggest that Cav-1 is associated with c-Myc in the development of HGPIN and prostate cancer. Furthermore, Cav-1 overexpression in HGPIN is potentially a biomarker for early identification of patients who tend to develop Cav-1+ primary prostate cancer. Mol Cancer Res; 10(2); 218–29. ©2011 AACR.

Introduction

A dilemma facing urologic oncologists today is whether all patients with prostate cancer who are aggressively treated with radical prostatectomy actually benefit from that invasive therapy. As many as 16% of radical prostatectomy specimens contain only small, well-differentiated cancers that may never achieve clinical significance during the lifetime of the patient (1, 2), whereas more than 50% of cancers considered preoperatively to be localized to the prostate are subsequently found extraprostatically and thus have a high risk of progression (3). Some preoperative indices, including prostate-specific antigen concentration and Gleason score of the carcinoma specimen obtained on needle biopsy, are important predictors of pathologic and clinical outcome. However, their predictive power is greatly diminished for cancers in the middle range of a given index. Thus, molecular markers that may supplement clinical information and predict cancer progression potential at an early stage of malignancy are being actively sought.

Caveolin-1 (Cav-1), a 22-kD structural protein of the caveolae, specialized invaginations in the plasma membrane, is an important mediator of molecular transport, cell adhesion, and cell signaling (4). The role of Cav-1 in tumorigenesis is complex, depending on cell type and biological context. Under some conditions, Cav-1 may suppress tumorigenesis (5), although Cav-1 upregulation is also associated with and contributes to the progression of multiple malignancies, including prostate cancer (6). PBcav-1 transgenic mice, which have targeted overexpression of Cav-1 in their prostatic epithelial cells, show prostatic hyperplasia (7), and in the transgenic adenocarcinoma
mouse prostate prostate cancer model, loss of Cav-1 function leads to fewer primary tumors and metastatic lesions (8). In addition, suppression of Cav-1 expression with stably transfected antisense Cav-1 cDNA converts androgen-insensitive metastatic mouse prostate cancer cells to an androgen-sensitive phenotype (9). Moreover, an immunohistochemical study of 162 clinically confined human prostate cancer specimens obtained from radical prostatectomies showed that Cav-1 expression is a novel independent prognostic biomarker for recurrence after prostatectomy (10).

Mechanistic studies have revealed that Cav-1 contributes to prostate cancer progression by activating PI3-K–Akt signaling and Akt target genes involved in inhibiting apoptosis in metastatic prostate cancer cells (11). Cav-1 expression also generates autocrine and paracrine positive feedback loops by increasing VEGF, TGF-B1, and FGF2 (fibroblast growth factor 2) mRNA stability, leading to increased levels of these proteins and increased invasiveness of prostate cancer cells (12) and proangiogenic activities (13). Cav-1 expression can also elevate cellular fatty acid synthase levels (14) and potentiate ligand-dependent androgen receptor activation (15).

Abnormal regulation of the c-Myc oncogene has been documented extensively in prostate cancer. Its amplification in metastatic and/or hormone-refractory prostate cancer was reported previously. More recent studies have documented amplification of the cMYC locus on chromosome 8q24 in a subset of aggressive prostate cancers (16). Results of other recent studies point to an essential role for c-Myc in oncogenic transformation of prostate epithelia. For example, nuclear c-Myc overexpression is found in high-grade prostatic intraepithelial neoplasia (HGPIN), the premalignant stage of human prostate cancer (17). In addition, introduction of the wild-type c-Myc has been reported to be sufficient to cause primary prostate epithelial cells to develop cancer phenotypes in vitro and in a tissue recombination model (18). In the C(3)1–c-myc transgenic mouse model, enforced prostate epithelial cell–specific c-Myc expression induces formation of PIN lesions (19). Finally, transgenic c-Myc expression under the transcriptional regulation of the rat probasin (PB) promoter can result in the development of mouse PIN (mPIN) and invasive adenocarcinoma (20).

Furthermore, transduction of the v-Myc oncoprotein results in epithelial hyperplasia, and v-Myc cooperates with the ras oncoprotein to generate prostate cancer in the mouse prostate reconstitution model (21). The findings that c-Myc activation by protein kinase Cε, a protein overexpressed in most advanced prostate cancers, may drive downstream Cav-1 overexpression in hormone-independent CWR-R1 cells (22) and that Cav-1 overexpression in LNCaP prostate cancer cells may inhibit c-Myc–induced apoptosis (23) suggest that Cav-1 is functionally associated with c-Myc. Our previous results showing that Cav-1 overexpression correlates positively with c-Myc overexpression in clinically confined human prostate cancers (24) also support this thought.

Because Cav-1 and c-Myc expression are closely associated in human prostate cancer (23, 24), we hypothesized that Cav-1 is associated with and contributes to c-Myc–induced HGPIN and prostate cancer. To test this hypothesis, we immunohistochemically analyzed human prostate specimens containing HGPIN lesions to identify any associations between Cav-1 and c-Myc expression in these lesions. First, we used specimens in which HGPIN coexisted with prostate cancer (adenocarcinoma), so that we could identify any association between Cav-1 expression in HGPIN and in prostate cancer. Then, to further investigate any relationship between Cav-1 and c-Myc expression in PIN and the transition to prostate cancer, we generated and characterized a new mouse transgenic model in which enforced prostate-specific c-Myc overexpression is driven by the ARR2PB promoter (25). In this model, c-Myc overexpression leads predominantly to development of mPIN, which is morphologically similar to human HGPIN, and microinvasive adenocarcinoma develops at a low frequency.

By using specimens in which HGPIN coexists with prostate cancer and our new transgenic mouse model, we showed and then confirmed the existence of a positive association between c-Myc overexpression and Cav-1 upregulation in mPIN, and HGPIN, and prostate cancer cells. Our results further suggest a role for c-Myc–VEGF–Cav-1 signaling in the development of prostate cancer.

Materials and Methods

Human prostate specimens
We used prostate specimens that had been obtained previously during radical prostatectomies with the approval of our Institutional Review Board and written informed consent from the patients. The formalin-fixed, paraffin-embedded specimens were archived in the Tissue Core facility funded by the prostate Specialized Program of Research Excellence (SPRORE P50-CA140388) grant at The University of Texas MD Anderson Cancer Center. For pathologic evaluation, 5-μm thick cross sections of the tissues were stained with hematoxylin and eosin (H&E), and an experienced pathologist (P.T.) identified for our study specimens that contained HGPIN lesions coexisting with at least 1 adenocarcinoma focus. Because of this criterion, we could use the specimens not only for identifying any association between Cav-1 and c-Myc expression in HGPIN but also for analyzing the relationship between Cav-1 expression in HGPIN and that in prostate cancer after Cav-1 and c-Myc immunostaining (Fig. 1).

Generation of ARR2PB–c-myc transgenic mice
C57BL/6J mice were used to generate ARR2PB-c-myc transgenic mice; the mice were maintained in facilities accredited by the American Association for Accreditation of Laboratory Animal Care. All procedures involving animals were approved by the Institutional Animal Care and Use Committee of the University of Texas MD Anderson Cancer Center.

To target expression of the human c-Myc transgene to the mouse prostate epithelium, we expressed c-Myc
cDNA under control of the ARR2PB promoter, in which the rat PB promoter was modified by inserting a sequence composed of 2 repeats of the androgen-responsive region (i.e., ARR2; ref. 25). The transgenic construct is depicted in Fig. 2. The 400-bp XbaI-BamI DNA fragment containing the ARR2PB promoter was excised from the pXCJL-1–ARR2PB–polyA vector (kindly provided by Dr. M. Marcelli, Baylor College of Medicine, Houston, TX) and used to replace the MMTV promoter in the pMMTV–KCR–bovine growth hormone polyA (bGHpA) vector (26). To maximize expression of the transgene, we added the rabbit β-globin gene fragment KCR, which comprises part of exon I, intron I, and exon II, and contains the requisite splice donors and acceptors. The 1.8-kb EcoRI fragment containing full-length human c-Myc cDNA was excised from the pSP–c-Myc vector (a generous gift from Dr. R.N. Eisenman, Fred Hutchinson Cancer Center, Seattle, WA) and inserted into the EcoRI site of the pARR2PB–KCR–bGHpA vector.

The resulting SalI DNA fragment containing the ARR2PB–KCR–c-Myc–bGHpA transgene devoid of vector sequences was gel purified. The purified transgene DNA was then microinjected into the pronucleus of a fertilized C57BL/6j mouse embryos that were then transplanted into the uteri of pseudopregnant C57BL/6 female mice according to the standard technique used in the Transgenic Core facility at Baylor College of Medicine. The resulting transgenic offspring were screened by conducting PCR analysis on genomic DNA isolated from tail snips. The forward primer was specific to the 5′ end of the KCR sequence (5′-GGATCCTGAGAACTTCAG-3′), and the reverse was located at the c-myc cDNA (5′-GTAGAAATACGGCTGACAC-3′).

Four founder lines (32T, 35T, 37T, and 39T) were generated and, after breeding, germline transmission was confirmed. Mice were euthanized when they were 3 to 17 months old, and ventral, anterior, and dorsolateral prostates were obtained from the male transgenic mice and their wild-type littermates. In addition, liver, kidney, seminal vesicle, small intestine, spleen, lung, brain, and heart tissues were obtained. Part of each tissue was fixed in 10% phosphate-buffered formalin (0.01 mol/L, pH 7.4) for 24 hours and then embedded in paraffin and cut into 5-μm sections for H&E staining or immunostaining.
another part was frozen in liquid nitrogen and processed for RNA and protein analysis. Initial quantitative reverse transcription analysis of c-myc transgene expression in the multiple organs was done on RNA by using the TaqMan protocol (Invitrogen) customized for the ARR2PB–KCR–c-Myc–bGHpA transgene. We also used paraffin-embedded sections of several prostates obtained from Hi-Myc transgenic mice developed originally by Ellwood-Yen and coworkers (20) for Cav-1 immunostaining.

Immunohistochemical analyses of prostate tissues

Antibodies to Cav-1, VEGF-A (Santa Cruz Biotechnology), c-Myc (clone Y79, Epitomics, Inc.), proliferating cell nuclear antigen (PCNA) and P-Akt (pSer473; Cell Signaling Technology, Inc.) were used for immunostaining on formalin-fixed paraffin-embedded tissues from both the mouse and human prostate specimens. All tissue sections were processed by using an avidin–biotin peroxidase complex kit (ABC; Vector Laboratories). Detailed descriptions of staining procedures for each antibody are described in Supplementary Methodology.
Apoptotic body labeling by terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick-end labeling technique

The terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick-end labeling (TUNEL) technique was used to label apoptotic bodies on mouse prostate tissue slides with a TUNEL cell death–detection kit (Millipore), following the manufacturer’s recommended procedure.

Quantitation of immunohistochemical labeling

Because of the heterogeneity of Cav-1 expression, a specimen was considered to have Cav-1–positive (Cav-1⁺) HGPIN when it had more than 1 glandular HGPIN profile in which more than 50% of the neoplastic epithelial cells stained positively for Cav-1. Prostate cancer specimens were considered Cav-1⁺ if they met the previously established criteria (10).

For quantitation of c-Myc immunostaining, multiple RGB images from HGPIN or prostate cancer areas were acquired by using an image-analysis system equipped with a motorized stage (Eclipse 90i; Nikon Instruments, Inc.). Images were analyzed at 200× by using Nikon’s NISElements version 3.0 software. The areas of HGPIN and prostate cancer on each image (i.e., the region of interest) were outlined manually, and all stromal areas and nontargeted epithelia were excluded.

The blue nuclear hematoxylin staining in the areas of HGPIN and prostate cancer was identified and recorded by using a pixel classifier that assesses color intensity, saturation, and hue on images. The total area of brown immunostaining of c-Myc in the epithelial cells of HGPIN and prostate cancer was measured and recorded by using another pixel classifier that recognizes only nuclear 3,3′-diaminobenzidine (DAB) staining. The ratio of the area of nuclear DAB staining to the total nuclear area (defined as the sum of the DAB- and hematoxylin-stained areas) was measured separately within HGPIN and cancerous epithelial compartments. This ratio, known as the nuclear c-Myc ratio, is positively correlated with the c-Myc⁺ nuclear fraction and has been used successfully for evaluating the nuclear expression of c-Myc in human prostates (17). For each specimen, we also acquired 10 images of histologically normal luminal epithelia from regions at least 10 mm away from a neoplasm; those images were analyzed by using the same technique just described.

To quantitate the immunostaining for PCNA and apoptotic bodies in the prostate from the transgenic mice, 10 to 20 microscopic fields (400×) were evaluated for each specimen. The numbers of PCNA⁺ cells and apoptotic bodies were counted and recorded as PCNA and apoptotic body labeling rates (%).

Cell lines and transfections

All human prostate cancer cell lines used in our experiments were validated by short tandem repeat (STR) DNA fingerprinting using the AmpF/STR Identifier kit (Applied Biosystems) in the MD Anderson Cancer Center Cell Line Core. The cell lines were grown in the following media: VCaP, in high-glucose Dulbecco’s modified Eagle’s medium with 10% FBS; LNCaP and PC-3, in RPMI-1640 with 10% FBS; and LAPC-4, in IMDM with 15% FBS. Cells were grown in 6-well plates and transfected with pcdna3.1–c-Myc plasmid or with empty pcdna3.1 vector by using Fugene HD (Roche) transfection reagent. In some experiments, PC-3 cells were also transfected with VEGF–specific siRNA (Ambion–Invitrogen or Santa Cruz Biotechnology) by using Lipofectamine RNAiMax (Invitrogen) 24 hours before being transfected with pcdna3.1–c-myc or empty pcdna3.1 vector.

Immunoblotting

Cultured cells from human prostate cancer cell lines were collected 24, 48, and 72 hours after transfection, and expression of specific proteins was analyzed by immunoblotting, as described previously (12), with a mouse monoclonal antibody (mAb; BD Biosciences) or a rabbit polyclonal (Santa Cruz) Cav-1 antibody, with a rabbit polyclonal VEGF-A antibody (Santa Cruz), and with a rabbit monoclonal c-Myc antibody (Epitomics). A β-actin mAb (Sigma-Aldrich) was used as the loading control.

Statistical analysis

The correlations between (i) Cav-1 immunostaining in HGPIN and that in prostate cancer and (ii) Cav-1 immunostaining with c-Myc immunolabeling in HGPIN and that in adenocarcinomas were analyzed by using Spearman’s rank order correlation coefficient [rho (ρ)] or Fisher exact testing. The Kruskal–Wallis test was used to analyze the relationships between nuclear c-Myc ratio and either the Gleason score or the pathologic stage of the prostate cancers. The nuclear c-Myc ratios in normal epithelial, HGPIN, and prostate cancer compartments were compared by using Mann–Whitney testing. ANOVA analysis followed by Student t testing was used to compare the PCNA labeling rates, apoptotic body labeling rates, and proliferation-to-apoptosis ratios between the normal epithelia and the mPIN lesions in the transgenic mice and between the normal epithelia of the transgenic mice and that of the wild-type mice. All analyses were done with Statview statistical software (version 5.0; SPSS Inc.). P values less than 0.05 were considered statistically significant in all analyses.

Results

Cav-1 overexpression in HGPIN in human radical prostatectomy specimens

Thirty-six archived prostate specimens met our criteria and were included in this study. Thirty-one of the specimens (86%) were pathologic stage pT2, 4 were pT3a, and 1 was pT3b. Sixteen of the specimens had a Gleason score 6; 17, a score 7; 2, a score 8; and 1, a score 9.

In the histologically normal regions of the 36 specimens, Cav-1⁺ immunostaining was abundant in the stromal and vascular cells, whereas it was almost undetectable in the prostate luminal epithelial cells (Fig. 1). In contrast, in the stromal cells of some Cav-1⁺ HGPINs or
prostate cancers, the level of immunostaining tended to be lower than it was in the stroma surrounding the normal glandular epithelia. Furthermore, Cav-1 immunostaining was detected in the glandular epithelia of HGPIN regions and in the cancer focii in some specimens, usually in a focal distribution pattern. Fifteen (41.7%) of the 36 specimens had Cav-1 staining in the glandular epithelia of HGPIN, and these specimens also tended to have Cav-1 cancer (Table 1); this correlation was statistically significant (p = 0.655; P < 0.001, Fisher exact test).

Among the 36 specimens used for Cav-1 immunostaining, 31 (86%) also had tissue slides available for c-Myc immunostaining. c-Myc staining was most abundant in the nuclei of the HGPIN and cancer cells, although some weaker labeling was observed in the cytoplasm as well (Fig. 1E and F). In this cohort of 31 specimens, the mean nuclear c-Myc ratios determined on image analysis were 0.111 in the prostate epithelia as a whole, 0.125 in the HGPIN areas, and 0.184 in the prostate cancer specimens, we generated the ARR2PB transgenic prostates; it was broadly induced in the glandular epithelia of the ARR2PB transgenic mice (Fig. 2B), confirming expression of the transgenic c-Myc gene. A high level of c-Myc protein was found in the ARR2PB transgenic but not in the wild-type prostate tissues (Fig. 2B), confirming expression of the transgenic c-Myc gene.

Characterization of ARR2PB-c-myc transgenic mice
To further investigate the correlations between increased c-Myc expression and Cav-1 positivity in the human HGPIN specimens, we generated the ARR2PB-c-myc transgenic mouse model. We verified the transgenic c-Myc expression by carrying out Western blotting with protein extracts of the prostates both from the transgenic mice that had been positively genotyped and from wild-type mice using a rabbit mAb specific to c-Myc. A high level of c-Myc protein was found in the ARR2PB-c-myc transgenic but not in the wild-type prostate tissues (Fig. 2B), confirming expression of the c-Myc transgene.

We further verified the transgenic c-Myc expression using immunostaining. c-Myc expression was not detected in any prostate lobe of the wild-type mice. In contrast, c-Myc staining was predominantly nuclear in the neoplastic glandular epithelia of the ARR2PB-c-myc transgenic prostates; weaker cytoplasmic staining was apparent in these cells. Regional differences in c-Myc expression were found in the transgenic prostates: it was broadly induced in the glandular

Table 1. Correlative analyses of Cav-1 and c-Myc immunostaining in human prostate specimens

<table>
<thead>
<tr>
<th>Prostate Cancer</th>
<th>Cav-1 negative (n)</th>
<th>Cav-1 positive (n)</th>
<th>Correlation coefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGPIN</td>
<td>Cav-1 negative (n=21)</td>
<td>19</td>
<td>2</td>
<td>0.655</td>
</tr>
<tr>
<td></td>
<td>Cav-1 positive (n=15)</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

HGPIN	Cav-1 negative (n=17)	12	5	0.418	0.032
	Cav-1 positive (n=14)	4	10		
PCa	Cav-1 negative (n=19)	16	3	0.555	<0.001
	Cav-1 positive (n=12)	2	10		
epithelia of the dorsolateral and ventral prostate lobes but was confined to some glandular segments of the anterior lobe (Fig. 2C).

c-Myc transgene expression leads to formation of mPIN lesions, microinvasive adenocarcinomas, and metaplasia

The H&E-stained sections of prostate tissues from the ARR2PB-c-myc transgenic mice were evaluated histologically according to the previously established criteria for transgenic mice (27). The glandular epithelia in all prostate lobes of the ARR2PB-c-myc transgenic mice (n = 41) had morphologic characteristics that differed from those in the wild-type counterparts (n = 26; Fig. 2D). The changes, which included epithelial thickening, tufting, and cribriform formation; enlarged cell size and nuclei with prominent nucleoli; and increased numbers of mitotic and apoptotic figures, all indicated formation of mPIN. We also observed that the most severe mPIN lesions were in the dorsal lobe, where cribriform glands had become the major structural form. The anterior lobes exhibited mainly focal mPIN lesions in which there were only a few granular profiles, or only part of a gland was involved. Microinvasive carcinoma cells were seen sprouting out of the mPIN lesions and forming small nests or masses of neoplastic cells in the periglandular stroma.

The incidence rates of mPIN lesions and carcinomas increased with age (Table 2).

Furthermore, mucinos metaplasia was observed in different prostatic lobes of the ARR2PB-c-myc transgenic mice (Fig. 2D). These cells resided adjacent to the neoplastic lesions and featured the presence of a mucin-like substance in the cytoplasm and basally localized nuclei.

Cav-1 overexpression in the prostatic epithelia of the ARR2PB-c-myc mice is specifically localized to the mPIN lesions and microinvasive adenocarcinomas

To determine whether enforced expression of the c-Myc transgene leads to Cav-1 expression in prostatic glandular epithelia, we conducted immunostaining. As Fig. 3 illustrates, Cav-1 was undetectable in the normal luminal epithelial cells in the prostates of the wild-type mice; immunostaining was confined to the stromal compartment, where multiple layers of periglandular myofibroblasts and vascular endothelial cells were strongly Cav-1+. In sharp contrast, the prostatic glandular epithelia in the transgenic mice were Cav-1+; high Cav-1 levels were observed in the mPIN lesions in mice as young as 3 months old. Furthermore, there was an evident difference in Cav-1 expression by lobe in the transgenic mice. Cav-1 was almost universally present throughout the epithelia of the dorsolateral and ventral lobes, whereas in the anterior lobe, Cav-1+ staining was confined to the regions that were also c-Myc+.

The cells of the microinvasive adenocarcinomas in the transgenic mice were also strongly Cav-1+ (Fig. 3). In addition, the Cav-1 levels in the stromal myofibroblasts that surround the glandular epithelia were remarkably lower in the transgenic mice than they were in the wild-type mice.

Of note, Cav-1 expression was also observed in the glandular epithelia of mPIN lesions and invasive adenocarcinomas in the Hi-Myc transgenic mice.

Cav-1 overexpression in mPIN lesions is associated with a relative reduction of apoptosis and upregulation of P-Akt and VEGF

The proliferative and apoptotic activities in the epithelia of the anterior prostate lobes were examined by using PCNA immunostaining and TUNEL techniques, respectively. Quantitative image analysis allowed parallel comparisons of PCNA and apoptotic body labeling rates between Cav-1+ mPIN lesions and the Cav-1+ epithelia adjacent to those lesions in the same transgenic mice (Fig. 4A). The numbers of PCNA+ cells and apoptotic bodies were relatively greater in Cav-1+ mPIN and microinvasive adenocarcinomas (data not shown), confirming that the c-Myc transgene induces proliferative and apoptotic activities.

The mPIN lesions in the transgenic mice had a 74.16% PCNA labeling rate, which is 37 times higher than that in the

Table 2. Histopathologic features and frequencies in the prostate of ARR2PB-c-myc transgenic mice

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>n</th>
<th>Wild-type</th>
<th>ARR2PB-c-myc</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–4</td>
<td>2</td>
<td>2/2 normal</td>
<td>4</td>
</tr>
<tr>
<td>6–8</td>
<td>12</td>
<td>11/12 normal</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/12 focal hyperplasia</td>
<td>18/22 mPIN</td>
</tr>
<tr>
<td>12–14</td>
<td>9</td>
<td>8/9 normal</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/9 focal hyperplasia</td>
<td>8/9 mPIN</td>
</tr>
<tr>
<td>≥15</td>
<td>3</td>
<td>3/3 normal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/6 mPIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/6 microinvasive adenocarcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/6 mucinous metaplasia</td>
</tr>
</tbody>
</table>
adenocarcinoma lesions (G and H). Scale bars, A, B, and G

Colleagues, Cav-1 was also highly expressed in the mPIN and Myc transgenic model originally developed by Ellwood-Yen and the overexpression of human Myc was also shown (F, arrows). In the Hi-in epithelial cells was con

the prostatic stroma. In the anterior prostate lobe, Cav-1 overexpression in the mouse, Cav-1 was overexpressed in the adenocarcinoma invading into the normal glands adjacent to the lesions (2.03%; \(P \leq 0.0001 \)). The difference in PCNA labeling rate in the normal glands adjacent to the mPIN lesions (4.34) that difference did not reach statistical significance (\(P = 0.409 \)). The higher PCNA:apoptosis ratio indicates lower apoptotic activity relative to the drastically increased proliferative activity in the mPIN lesions, compared with the activities in the epithelia adjacent to mPIN lesions in the transgenic mice.

Because our previous in vitro studies had identified an increase in Akt level as a molecular event that contributes to Cav-1-induced prostate cancer cell survival (11), we used immunostaining to compare P-Akt (S473) levels in the Cav-1 mPIN lesions and the Cav-1 normal glandular epithelia adjacent to mPIN in the transgenic mice. We found P-Akt–positive immunostaining in the mPIN lesions and microinvasive carcinomas in the transgenic mice (Fig. 4B), but positive staining was minimal in the normal glandular epithelial cells adjacent to mPIN or cancer lesions in the transgenic mice and in the normal glandular epithelial cells in the wild-type animals.

Because Cav-1 and specific oncogenic growth factors, including VEGF, FGF2, and TGF-\(\beta \), establish a positive feedback loop in prostate cancer cells (12), we immunohistochemically determined their levels in the ARR2PB c-myc mice so that we could identify any association between those levels and Cav-1 overexpression. In the transgenic mice, the mPIN and cancer cells did not have any increased levels of FGF2 and TGF-\(\beta \), compared with those in the adjacent normal epithelial cells (data not shown). In contrast, the mPIN lesions and microinvasive carcinomas were strongly labeled by the VEGF antibody (Fig. 4B). The prostate glandular tissues adjacent to the mPIN lesions in both the transgenic and wild-type mice stained negatively for VEGF-A.

c-Myc induces Cav-1 expression in prostate cancer cell lines, in part through upregulation of VEGF-A

To evaluate whether Cav-1 overexpression in prostate epithelial cells can be induced by c-Myc overexpression in vitro, we analyzed Cav-1 expression in multiple prostate cancer lines after transfecting them with the control vector pcDNA3.1 or the c-Myc expression vector pcDNA-c-myc. Cell lines with a relatively low to moderate level of endogenous Cav-1—VCaP, LNCaP, and PC-3—showed upregulated Cav-1 protein expression 24 and 48 hours after c-Myc transfection (Fig. 5). In LAPC4 cells, however, which have a moderate level of endogenous Cav-1, no significant changes occurred. None of the tested cell lines exhibited any significant changes in Cav-1 RNA levels in either the presence or absence of c-Myc (data not shown), suggesting that a posttranscriptional mechanism is involved.

The induction of Cav-1 by c-Myc may be a multistep process that can be explained by the stability of Cav-1 RNA or protein that occurred in response to c-Myc–stimulated...
gene activities, including the production of growth factors. Because we found that the induction of VEGF-A correlated with the induction of Cav-1 in response to c-Myc in VCaP, LNCaP, and PC-3 cells, we hypothesized that c-Myc induction stimulates angiogenic activities and that production of VEGF-A may in turn stimulate Cav-1 expression. To test this hypothesis, we used VEGF siRNA (siVEGF) to knockdown VEGF-A expression in PC-3 cells and followed that by transfecting them with pcdna3.1 vector or pcdna-c-myc. The results showed that siVEGF, but not control siRNA (siNC), downregulates VEGF-A protein expression 72 hours after the initial VEGF siRNA transfection (Fig. 5B: compare siNC and siVEGF). Transfection with c-myc induced Cav-1 expression as before (Fig. 5B: compare siNC and siNC c-myc). However, Cav-1 induction by c-Myc was reduced in VEGF knockdown conditions (Fig. 5B: compare siNC c-myc and siVEGF c-myc).

Together, these results showed that induction of Cav-1 expression in response to c-Myc may be at least partly mediated through c-Myc–stimulated VEGF expression (Fig. 5C).

Discussion

Our finding that Cav-1 was expressed in 41.7% of the human HGPIN specimens we analyzed suggests that Cav-1 is involved in the development of premalignant lesions in a subgroup of prostate cancer patients. We also found a positive association between Cav-1 and c-Myc immunostaining in both HGPIN and prostate cancer. Furthermore, our results revealed a highly significant association between Cav-1 HGPIN and Cav-1 prostate cancer. Thus, our overall immunostaining results in human prostate cancer samples suggest that Cav-1 and c-Myc cooperate in the development of HGPIN and in the transition from HGPIN to prostate cancer. In a previous study, we showed that prostate cancer patients with high levels of serum Cav-1 have a higher risk of biochemical recurrence following radical prostatectomy (28). This newly revealed association between Cav-1 overexpression in HGPIN and that in prostate cancer further suggests that Cav-1 immunostaining in HGPIN may be useful as an early biomarker for identifying patients who will develop a Cav-1 cancer and, therefore, have a high risk of progression. It will be interesting to determine in a future study whether the presence of a Cav-1 HGPIN lesion in a prostate biopsy specimen has independent predictive value for the development and progression of prostate cancer.

To further investigate the relationship we found between c-Myc expression and Cav-1 expression as well as their interaction during the development of premalignant lesions and prostate cancer in vivo, we generated the new ARR2PB c-myc transgenic mouse model. Our new model bears similarities to the Hi-Myc model previously established by Ellwood-Yen and coworkers (20) in that both models use the ARR2PB promoter to enforce transgenic c-Myc expression. However, some differences exist. First, our model contains the full-length 1.8-kb human c-MYC cDNA instead of a 1.3-kb sequence, in which only the open reading frame was constructed in the transgene. Second, our new ARR2PB c-myc construct does not include the Flag-tagged sequences present in the Hi-Myc construct. The new ARR2PB c-myc
construct was verified by sequencing. Third and finally, the new ARR2PB–c-myc mice were generated using C57BL/6J mice, whereas the Hi-Myc mice were generated using the FVB strain. In spite of these differences, our new transgenic mice, like the Hi-Myc mice, are characterized by the presence of mPIN lesions, which are morphologically similar to human HGPIN lesions and adenocarcinomas (27), although the frequency of adenocarcinomas in our new model was lower than that in the Hi-Myc model. It is interesting to note the presence of c-Myc-induced mucinous metaplasia in our model, which was not reported in the Hi-Myc model. In both animal models, our immunohistochemical analyses revealed increased Cav-1 immunostaining within all mPIN lesions and cancers but not in normal glandular epithelia; this finding does support a role for c-Myc overexpression in Cav-1 upregulation in these neoplastic lesions.

In a recent study, we showed that transgenic Cav-1 overexpression in mouse prostate results in the generation of proliferative lesions characterized by epithelial hyperplasia with atypia (7). However, because the enforced Cav-1 expression in that study did not induce mPIN or adenocarcinoma, we concluded that overexpression of the Cav-1 gene by itself is unable to directly induce oncogenic transformation; furthermore, we concluded that Cav-1 may be involved in oncogenic transformation by mediating the expression and function of oncogenic growth factors (12). The new findings we report here of Cav-1 overexpression in ARR2PB–c-myc mice provide the first in vivo evidence that in association with overexpression of c-Myc, Cav-1 overexpression is associated with the development of premalignant lesions and the transition to malignancy.

To investigate the role of Cav-1 in c-Myc–induced PIN and prostate cancer, we compared the proliferative and apoptotic activities in the ARR2PB–c-myc transgenic prostate epithelia between the Cav-1–transgenic and function of oncogenic growth factors (12). The new findings we report here of Cav-1 overexpression in ARR2PB–c-myc mice provide the first in vivo evidence that in association with overexpression of c-Myc, Cav-1 overexpression is associated with the development of premalignant lesions and the transition to malignancy.

To investigate the role of Cav-1 in c-Myc–induced PIN and prostate cancer, we compared the proliferative and apoptotic activities in the ARR2PB–c-myc transgenic prostate epithelia between the Cav-1–transgenic and function of oncogenic growth factors (12). The new findings we report here of Cav-1 overexpression in ARR2PB–c-myc mice provide the first in vivo evidence that in association with overexpression of c-Myc, Cav-1 overexpression is associated with the development of premalignant lesions and the transition to malignancy.

To investigate the role of Cav-1 in c-Myc–induced PIN and prostate cancer, we compared the proliferative and apoptotic activities in the ARR2PB–c-myc transgenic prostate epithelia between the Cav-1–transgenic and function of oncogenic growth factors (12). The new findings we report here of Cav-1 overexpression in ARR2PB–c-myc mice provide the first in vivo evidence that in association with overexpression of c-Myc, Cav-1 overexpression is associated with the development of premalignant lesions and the transition to malignancy.
that in adjacent normal prostatic epithelia, indicating relative inhibition of apoptosis in Cav-1–mPIN lesions.

In another previous study, we showed that Cav-1–mediated inhibition of PP1 and PP2A led to significantly increased levels of P-Akt and sustained activation of downstream oncogenic Akt targets that promote cell survival (11). Given those results, the co-overexpression of Cav-1 and P-Akt shown by our new immunostaining results in the Cav-1+/mPIN lesions of the ARR2PB–c-myc mice strongly suggests a role for Cav-1 in Akt activation in this context. Furthermore, it has been shown that Akt activation may inhibit c-Myc–induced apoptosis (32–34). We previously showed that the Cav-1 upregulation by Cav-1 transfection of LNCaP cells suppressed c-Myc–induced apoptosis and facilitated the growth of cancer cell colonies in soft agar (23). Our new results, together with those of previous studies, suggest that Cav-1–mediated Akt activation contributes to c-Myc–induced mPIN and the transition from PIN to prostate cancer.

The mechanisms underlying the Cav-1 overexpression in the new ARR2PB–c-myc mouse model remain to be explored. In prostate cancer cell lines, c-Myc transfection induces elevated levels of Cav-1 protein but not of Cav-1 mRNA, a finding consistent with the results of the sequence analysis of the Cav-1 promoter (35). This promoter does not reveal a canonical E-box, the potential DNA sequence targeted by c-Myc; therefore, Cav-1 is not likely a direct target of c-Myc. Cav-1 upregulation by c-Myc in the ARR2PB–c-myc mice and in cancer cells may instead be mediated by other factors via a posttranscriptional mechanism(s). We previously showed that cellular Cav-1 levels can be regulated by multiple growth factors, including VEGF, in prostate cancer cells and that an elevated Cav-1 level may, via a reciprocal positive feedback mechanism, increase cell-associated and cell-secreted VEGF levels by stabilizing VEGF mRNA (12). c-Myc activation is essential for VEGF production and angiogenesis during development and tumor progression (36) and has been reported to stimulate VEGF translation or to increase VEGF protein levels in several cells (37, 38). Our results showed elevated coexpression of VEGF and Cav-1 in the mPIN lesions of ARR2PB–c-myc mice and in human specimens, together with those showing that VEGF siRNA blocks c-Myc–stimulated Cav-1 expression, suggest that VEGF may mediate the interactions between c-Myc and Cav-1. Possibly, a c-Myc–VEGF–Cav-1 positive feedback cycle plays a role in the development of PIN and the transition to prostate cancer (Fig. 5C).

In summary, through immunostaining analysis of human HGPIN and prostate cancer samples and similar analyses done using a new mouse model of the transition from PIN to prostate cancer (ARR2PB–c-myc mice), we have shown the existence of a close association between Cav-1 overexpression and c-Myc expression in neoplastic prostatic growth. Further immunostaining results and direct gene transfer studies in vitro showed that VEGF expression can mediate c-Myc–stimulated Cav-1 upregulation, suggesting the existence of a c-Myc–VEGF–Cav-1 positive feedback cycle. Additional studies are warranted to determine the importance of our results in the development of HGPIN and the transition to prostate cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Karen F. Phillips, ELS, for her expert editorial assistance.

Grant Support

This work was supported in part by the NIH through MD Anderson Cancer Center Support grant (CA016672), through SPORE grants (P50-CA5204 and P50-CA140388), and through grants R01CA68184 (to T.C. Thompson) and R01CA55858 (to T.C. Thompson); and by the United States Department of Defense grant DAMD 17-98-1-8575 (to T.C. Thompson).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 15, 2011; revised October 26, 2011; accepted November 15, 2011; published OnlineFirst December 5, 2011.

References

1. Epstein JI, Walsh PC, Carmaichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994;271:368–74.
Caveolin-1 in Prostatic Intraepithelial Neoplasia

Molecular Cancer Research

Caveolin-1 Upregulation Contributes to c-Myc–Induced High-Grade Prostatic Intraepithelial Neoplasia and Prostate Cancer

Guang Yang, Alexei A. Goltsov, Chengzhen Ren, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1541-7786.MCR-11-0451

Supplementary Material
Access the most recent supplemental material at:
http://mcr.aacrjournals.org/content/suppl/2011/12/04/1541-7786.MCR-11-0451.DC1

Cited articles
This article cites 38 articles, 16 of which you can access for free at:
http://mcr.aacrjournals.org/content/10/2/218.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/10/2/218.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.